
SQL Server 批量插入数据的两种方法
在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题。下面介绍SQL Server支持的两种批量数据插入方法:Bulk和表值参数(Table-Valued Parameters)。
运行下面的脚本,建立测试数据库和表值参数。
[c-sharp] view plaincopy
--Create DataBase
create database BulkTestDB;
go
use BulkTestDB;
go
--Create Table
Create table BulkTestTable(
Id int primary key,
UserName nvarchar(32),
Pwd varchar(16))
go
--Create Table Valued
CREATE TYPE BulkUdt AS TABLE
(Id int,
UserName nvarchar(32),
Pwd varchar(16))
下面我们使用最简单的Insert语句来插入100万条数据,代码如下:
[c-sharp] view plaincopy
Stopwatch sw = new Stopwatch();
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);//连接数据库
SqlCommand sqlComm = new SqlCommand();
sqlComm.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL
sqlComm.Parameters.Add("@p0", SqlDbType.Int);
sqlComm.Parameters.Add("@p1", SqlDbType.NVarChar);
sqlComm.Parameters.Add("@p2", SqlDbType.VarChar);
sqlComm.CommandType = CommandType.Text;
sqlComm.Connection = sqlConn;
sqlConn.Open();
try
{
//循环插入100万条数据,每次插入10万条,插入10次。
for (int multiply = 0; multiply < 10; multiply++)
{
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
sqlComm.Parameters["@p0"].Value = count;
sqlComm.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply);
sqlComm.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply);
sw.Start();
sqlComm.ExecuteNonQuery();
sw.Stop();
}
//每插入10万条数据后,显示此次插入所用时间
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
}
Console.ReadLine();
耗时图如下:
由于运行过慢,才插入10万条就耗时72390 milliseconds,所以我就手动强行停止了。
下面看一下使用Bulk插入的情况:
bulk方法主要思想是通过在客户端把数据都缓存在Table中,然后利用SqlBulkCopy一次性把Table中的数据插入到数据库
代码如下:
[c-sharp] view plaincopy
public static void BulkToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);
bulkCopy.DestinationTableName = "BulkTestTable";
bulkCopy.BatchSize = dt.Rows.Count;
try
{
sqlConn.Open();
if (dt != null && dt.Rows.Count != 0)
bulkCopy.WriteToServer(dt);
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
if (bulkCopy != null)
bulkCopy.Close();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
dt.Columns.AddRange(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = Bulk.GetTableSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = dt.NewRow();
r[0] = count;
r[1] = string.Format("User-{0}", count * multiply);
r[2] = string.Format("Pwd-{0}", count * multiply);
dt.Rows.Add(r);
}
sw.Start();
Bulk.BulkToDB(dt);
sw.Stop();
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
Console.ReadLine();
}
耗时图如下:
使用Bulk插入100万数据的耗时图
可见,使用Bulk后,效率和性能明显上升。使用Insert插入10万数据耗时72390,而现在使用Bulk插入100万数据才耗时17583。
最后再看看使用表值参数的效率,会另你大为惊讶的。
表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写一篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。言归正传,看代码:
[c-sharp] view plaincopy
public static void TableValuedToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
const string TSqlStatement =
"insert into BulkTestTable (Id,UserName,Pwd)" +
" SELECT nc.Id, nc.UserName,nc.Pwd" +
" FROM @NewBulkTestTvp AS nc";
SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);
SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt);
catParam.SqlDbType = SqlDbType.Structured;
//表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。
catParam.TypeName = "dbo.BulkUdt";
try
{
sqlConn.Open();
if (dt != null && dt.Rows.Count != 0)
{
cmd.ExecuteNonQuery();
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
dt.Columns.AddRange(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = TableValued.GetTableSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = dt.NewRow();
r[0] = count;
r[1] = string.Format("User-{0}", count * multiply);
r[2] = string.Format("Pwd-{0}", count * multiply);
dt.Rows.Add(r);
}
sw.Start();
TableValued.TableValuedToDB(dt);
sw.Stop();
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
Console.ReadLine();
}
耗时图如下:
使用表值参数插入100万数据的耗时图
比Bulk还快5秒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28