京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈使用ArcPy执行大数据量处理任务
Python功能强大而易于学习。对于ArcGIS for Desktop用户来讲,Python是提高工作效率的不二选择。
Arcpy是esri提供的用于高效数据处理分析、制图等的Python站点包。 利用ArcPy,我们可以在ArcMap的Python窗口交互执行脚本,还可以创建自定义脚本工具或脚本工具箱,还可以在ArcGIS之外运行独立脚本,享受更纯正的python体验。
这一篇说说如何利用Python批量执行数据处理任务,这个问题也是前段时间遇到的用户的实际问题,比较有价值。
需求
还是从实例开始……
有一个简单但耗体力的裁剪任务,希望通过大量面分割(逐一裁剪)大量的数据,类似Split工具要完成的任务,并且要按照一定的规则命名将分割结果输出到指定的位置,例如要求有指定前缀。
实现
例如,一种思路是逐一遍历面要素,然后去裁剪目标数据再输出,这时你可能会遇到下面的小问题:
我如何通过ArcPy获取要素的几何?
在ArcPy中提供了一个数据访问模块/Data Access (arcpy.da),我们可以通过游标(Cursor)来查询要素的几何或属性。在这个需求中是逐一遍历面要素的几何,我们选择 SearchCursor,通过 SHAPE@ 可以访问要素的几何。
语法: SearchCursor(in_table, field_names, {where_clause}, {spatial_reference}, {explode_to_points}, {sql_clause})
了解详细的帮助信息点这里。
那么可以把函数主体定义成这样,即可实现需求:
def MyBatchClip(Parameter):
# 参数
inputFC = Parameter[0]
ClipArea = Parameter[1]
OutputWS = Parameter[2]
Prefix = Parameter[3]
# 字段列表,SHAPE@ 访问要素几何对象
Fields = ['FID','SHAPE@']
# 遍历面要素逐一裁剪目标数据并输出自定义前缀的结果。
with arcpy.da.SearchCursor(ClipArea,Fields) as cursor:
for row in cursor:
outputFC = os.path.join(OutputWS, Prefix+str(row[0])+'.shp')
arcpy.Clip_analysis(inputFC, row[1], outputFC)
多进程
如果这个批量任务是大量的,如何更高效地开动起来?
这里按照esri以前的一篇 Blog 提到的方法分享给大家,使用Multiprocessing模块并行处理。 Multiprocessing 模块是Python的一个标准库,通过这个库,我们可以利用多核CPU,来实现多进程处理大数据量的任务。
可以通过 multiprocessing.Pool 来使用进程池,Pool类可以管理固定数目的进程,默认是开启和机器CPU数目相同的进程。
语法:
multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
processes表示pool中进程的数目,默认地为当前CPU的核数。
initializer表示新进程的初始化函数。
initargs表示新进程的初始化函数的参数。
maxtasksperchild表示每个进程执行task的最大数目
把脚本修改下,加上多进程处理的部分:
# -*- coding:utf-8 -*-
__author__ = 'kikita'
import arcpy
import timeit
import time
import multiprocessing
import os
arcpy.env.workspace = r'D:\LearnAboutPython\MyPythonProject\UsingCurser\DemoDataS.gdb'
arcpy.env.overwriteOutput = True
# 批量裁剪函数
def MyBatchClip(Parameter):
# 参数
inputFC = Parameter[0]
ClipArea = Parameter[1]
OutputWS = Parameter[2]
Prefix = Parameter[3]
# 字段列表,其中 SHAPE@用于访问数据几何
Fields = ['OBJECTID','SHAPE@']
with arcpy.da.SearchCursor(ClipArea,Fields) as cursor:
for row in cursor:
outputFC = os.path.join(OutputWS, Prefix+str(row[0])+'.shp')
arcpy.Clip_analysis(inputFC, row[1], outputFC)
print Prefix+str(row[0])+'.shp'
if __name__ == '__main__':
# 参数
OutputWS = r'D:\LearnAboutPython\MyPythonProject\UsingCurser\OutputWS'
# SDE库输出
#OutputWS = r'C:\Connection131.sde'
Parameter1 = ['CountyPoints','Area_A',OutputWS, 'AAA_']
Parameter2 = ['hyd_line','Area_B',OutputWS, 'BBB_']
Parameter3 = ['River_line.shp','Area_C.shp',OutputWS,'CCC_']
Parameters = [Parameter1,Parameter2,Parameter3 ]
# 当前CPU核数
print 'CPU Count:' + str(multiprocessing.cpu_count())
# 进程池
MyGPpool = multiprocessing.Pool()
# 多进程并行处理
StartTime = time.time()
results = MyGPpool.map(MyBatchClip,Parameters)
EndTime = time.time()
print 'Elapsed: ' + str(EndTime - StartTime) + ' Seconds...'
结果
CPU Count:8
AAA_0.shp
BBB_0.shp
CCC_0.shp
BBB_1.shp
AAA_1.shp
CCC_1.shp
BBB_2.shp
AAA_2.shp
CCC_2.shp
……
……
……
BBB_28.shp
AAA_27.shp
BBB_29.shp
CCC_28.shp
CCC_29.shp
AAA_28.shp
BBB_30.shp
CCC_30.shp
AAA_29.shp
AAA_30.shp
Elapsed: 28.628000021 Seconds...
一点有用的提示:
1.在使用Multiprocessing时,注意数据锁定(Schema Lock)的问题,例如这个例子中,当输出工作空间选择为FileGDB时出现异常。 使用文件夹输出 Shapefile,或者以SDE数据库作为输出工作空间,都是可以的。
2.我在代码中也加入了计时,用于比较并行与否的耗时情况。 但是有时确实会发现,较简单的处理任务时,多进程并行并不比单进程快,因为导入模块和启动进程都需要花时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12