
浅谈使用ArcPy执行大数据量处理任务
Python功能强大而易于学习。对于ArcGIS for Desktop用户来讲,Python是提高工作效率的不二选择。
Arcpy是esri提供的用于高效数据处理分析、制图等的Python站点包。 利用ArcPy,我们可以在ArcMap的Python窗口交互执行脚本,还可以创建自定义脚本工具或脚本工具箱,还可以在ArcGIS之外运行独立脚本,享受更纯正的python体验。
这一篇说说如何利用Python批量执行数据处理任务,这个问题也是前段时间遇到的用户的实际问题,比较有价值。
需求
还是从实例开始……
有一个简单但耗体力的裁剪任务,希望通过大量面分割(逐一裁剪)大量的数据,类似Split工具要完成的任务,并且要按照一定的规则命名将分割结果输出到指定的位置,例如要求有指定前缀。
实现
例如,一种思路是逐一遍历面要素,然后去裁剪目标数据再输出,这时你可能会遇到下面的小问题:
我如何通过ArcPy获取要素的几何?
在ArcPy中提供了一个数据访问模块/Data Access (arcpy.da),我们可以通过游标(Cursor)来查询要素的几何或属性。在这个需求中是逐一遍历面要素的几何,我们选择 SearchCursor,通过 SHAPE@ 可以访问要素的几何。
语法: SearchCursor(in_table, field_names, {where_clause}, {spatial_reference}, {explode_to_points}, {sql_clause})
了解详细的帮助信息点这里。
那么可以把函数主体定义成这样,即可实现需求:
def MyBatchClip(Parameter):
# 参数
inputFC = Parameter[0]
ClipArea = Parameter[1]
OutputWS = Parameter[2]
Prefix = Parameter[3]
# 字段列表,SHAPE@ 访问要素几何对象
Fields = ['FID','SHAPE@']
# 遍历面要素逐一裁剪目标数据并输出自定义前缀的结果。
with arcpy.da.SearchCursor(ClipArea,Fields) as cursor:
for row in cursor:
outputFC = os.path.join(OutputWS, Prefix+str(row[0])+'.shp')
arcpy.Clip_analysis(inputFC, row[1], outputFC)
多进程
如果这个批量任务是大量的,如何更高效地开动起来?
这里按照esri以前的一篇 Blog 提到的方法分享给大家,使用Multiprocessing模块并行处理。 Multiprocessing 模块是Python的一个标准库,通过这个库,我们可以利用多核CPU,来实现多进程处理大数据量的任务。
可以通过 multiprocessing.Pool 来使用进程池,Pool类可以管理固定数目的进程,默认是开启和机器CPU数目相同的进程。
语法:
multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
processes表示pool中进程的数目,默认地为当前CPU的核数。
initializer表示新进程的初始化函数。
initargs表示新进程的初始化函数的参数。
maxtasksperchild表示每个进程执行task的最大数目
把脚本修改下,加上多进程处理的部分:
# -*- coding:utf-8 -*-
__author__ = 'kikita'
import arcpy
import timeit
import time
import multiprocessing
import os
arcpy.env.workspace = r'D:\LearnAboutPython\MyPythonProject\UsingCurser\DemoDataS.gdb'
arcpy.env.overwriteOutput = True
# 批量裁剪函数
def MyBatchClip(Parameter):
# 参数
inputFC = Parameter[0]
ClipArea = Parameter[1]
OutputWS = Parameter[2]
Prefix = Parameter[3]
# 字段列表,其中 SHAPE@用于访问数据几何
Fields = ['OBJECTID','SHAPE@']
with arcpy.da.SearchCursor(ClipArea,Fields) as cursor:
for row in cursor:
outputFC = os.path.join(OutputWS, Prefix+str(row[0])+'.shp')
arcpy.Clip_analysis(inputFC, row[1], outputFC)
print Prefix+str(row[0])+'.shp'
if __name__ == '__main__':
# 参数
OutputWS = r'D:\LearnAboutPython\MyPythonProject\UsingCurser\OutputWS'
# SDE库输出
#OutputWS = r'C:\Connection131.sde'
Parameter1 = ['CountyPoints','Area_A',OutputWS, 'AAA_']
Parameter2 = ['hyd_line','Area_B',OutputWS, 'BBB_']
Parameter3 = ['River_line.shp','Area_C.shp',OutputWS,'CCC_']
Parameters = [Parameter1,Parameter2,Parameter3 ]
# 当前CPU核数
print 'CPU Count:' + str(multiprocessing.cpu_count())
# 进程池
MyGPpool = multiprocessing.Pool()
# 多进程并行处理
StartTime = time.time()
results = MyGPpool.map(MyBatchClip,Parameters)
EndTime = time.time()
print 'Elapsed: ' + str(EndTime - StartTime) + ' Seconds...'
结果
CPU Count:8
AAA_0.shp
BBB_0.shp
CCC_0.shp
BBB_1.shp
AAA_1.shp
CCC_1.shp
BBB_2.shp
AAA_2.shp
CCC_2.shp
……
……
……
BBB_28.shp
AAA_27.shp
BBB_29.shp
CCC_28.shp
CCC_29.shp
AAA_28.shp
BBB_30.shp
CCC_30.shp
AAA_29.shp
AAA_30.shp
Elapsed: 28.628000021 Seconds...
一点有用的提示:
1.在使用Multiprocessing时,注意数据锁定(Schema Lock)的问题,例如这个例子中,当输出工作空间选择为FileGDB时出现异常。 使用文件夹输出 Shapefile,或者以SDE数据库作为输出工作空间,都是可以的。
2.我在代码中也加入了计时,用于比较并行与否的耗时情况。 但是有时确实会发现,较简单的处理任务时,多进程并行并不比单进程快,因为导入模块和启动进程都需要花时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26