
大数据是实施“持续安全”战略的重要法宝
9月5日,国务院印发《促进大数据发展行动纲要》,提出“大数据是推动政府治理能力现代化的内在需要和必然选择”。作为民航安全从业人员,笔者不由地思考大数据在实施“持续安全”战略中将发挥哪些作用?
大数据是实施“持续安全”战略的重要法宝。
实施“持续安全”战略,核心是完成对风险隐患的精细化、科学化和系统化管控,基础在于实现安全监管的内容、行为和结果的数据化,对安全形势研判和决策做到“心中有数”。
当前,民航业已经构建了成熟的分层级、分专业、分环节的监管体系。但在部分领域的部分环节,其数据化程度还有待提高,有的没有被完整记录,有的“沉睡”在档案室里,有的隐藏在脑海中,还有的可能模糊在印象中,离实现全行业安全监管大数据目标还有较大差距。
遗失的、“沉睡”的、隐藏的、模糊的数据难以被科学利用并发挥作用。曾有领导干部感慨:“是一年监管6000次,还是监管8000次?6000次未必出事,8000次未必不出事!”
“活着”的大数据,才能完成对安全形势的定量化分析,从而做到“用数据说话,用数据分析,用数据管理,用数据决策,用数据创新”。
因此,大数据是实现风险管控从“定性”到“定量”的跨越,实施“持续安全”战略的重要法宝。
大数据在民航安全监管中
应用的成果和不足
对民航来说,大数据并不陌生。
(一)成果方面。大数据的采集、整合、分析和利用需要信息系统的支撑,而民航作为信息技术应用的典范行业,在行业范围内有民航飞行标准监督管理系统(FSOP)、使用困难报告系统(SDR)、安全管理体系(SMS)、航空安全信息网等;在区域范围内有华东民航安全监管工作平台(ESSP)等监管协作平台,部分监管局也搭建了独立的业务信息平台。部分监管局使用较好的系统,如飞行标准监督管理系统(FSOP),已经完成了由“沉睡的数据”到“数据”,由“数据”到“大数据”的积累过程。
经过深入观察,不难发现这些领域基本实现了大数据与监管工作的相互融合及促进。一方面,日常的监管工作为大数据提供鲜活的素材。通过信息技术将日常监管的内容、动作、成果以数据化形式记录到数据库中,进而形成大数据;另一方面,大数据在为宏观的安全形势分析和决策提供强力支撑的同时,也反作用于日常监管,在促进其实现精细化、科学化、系统化的同时,还实现了业务线管理的扁平化和信息化。
(二)不足方面。主要表现为数据还不够“大”。直接原因是平台的孤立性和数据挖掘的粗线条,更深层次的原因还在于大数据离与全行业、全领域的安全监管工作融合还有较大差距。主要体现在三个方面:一是并非所有领域的监管内容都很精细,都制定了可执行、可追溯的风险清单、监管清单。二是并非对所有的监管行为都进行智能跟踪分析,对监管结果都进行可量化评估。三是并非所有的监管结果都可转化为对企业安全风险状态进行量化评估的依据。
实施持续安全战略,不仅要在意识层面上采用科学的思维方式和思想方法,还要在工作层面上从盯人、盯事件、盯岗位的传统监管模式转变到盯系统、盯组织上来。然而 ,系统、组织毕竟不同于有形的监管对象,它看不见、摸不着。在无迹可循的摸索中,如果没有大数据的支撑,我们容易陷入传统监管模式的依赖惯性和“心中无数”的纠结中。
促进大数据与监管融合
是实施“持续安全”战略的重要途径
将大数据与监管融合,也许是找到症结,促进监管转型的有益尝试。
(一)以大数据的精细化,促进制定各领域的精细的风险清单、监管清单。一方面,梳理法律、规章、政策文件、内部制度中已找到界定的风险点,另一方面,充分挖掘经验数据,梳理历年监管数据和事件、事故数据,交流总结各地监管经验,制定针对不同企业主体的风险清单和监管清单。以清单为依据,结合监察计划和监管目的,科学计算并编制监管任务,以实现对风险隐患的网状覆盖。
(二)以大数据的科学化,促进建立科学的监管效能评估模型。一方面,建立记录全流程执法行为的数据库,按照每个环节是否均有章可循,有据可查、有人负责、有人监督为标准,智能跟踪并科学评估执法行为的规范性,避免因执法标准不统一、程序不规范引发的后续问题;另一方面,进行监察工作量化评估和过错责任追究制,科学评估考核监管工作成效,防范因监管水平、能力、状态等因素造成的监管质量的起伏波动。
(三)以数据的系统化,促进建立系统的企业风险指数数据模型。一是实现对安全形势持续进行量化分析。充分利用“沉睡”在档案中历年不同企业主体的检查、整改、处罚等数据,科学建模,形成可量化、可分析的各环节的企业风险指数。二是依据风险指数,优化监管资源分配。根据风险指数的高低和变化情况,科学调配监管资源投放,并有针对性地加大监管力度,把好钢用在刀刃上。三是以指数合理性体现安全工作的经济效益。安全工作之所以难做,很重要的原因在于安全的经济效益具有天然的隐匿性,其在财务报表中并无体现。将企业风险指数与企业经营挂钩,对风险指数高的企业进行航班时刻和生产运行等方面的限制,促使生产运行主体充分认识并协调好“安全与发展、安全与效益、安全与服务、安全与正常”的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04