京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【金融数据】挖掘数据价值,打造智能银行
今天移动互联网正狂飙突进、网上购物平台和网上社交平台也方兴未艾,包括结构化数据、半结构化数据、非结构化数据的大数据爆炸式增长。早在2012年,大数据已经登上美国《纽约时报》的专栏封面,专栏称:“大数据时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析,而非基于经验和直觉。”目前银行业在开展业务过程中积累了海量高价值数据,很多银行的数据量级已经超过100TB,其中非结构化正以加速度形式积累。因此,不管传统银行业是拥抱还是抗拒,大数据时代已经呼啸而来。
开拓视野,深刻理解大数据运用的四个层次。研究表明,大数据通过层层晋升能够成为指导行动的智慧。概括地讲,大数据运用分为四个层次,第一层,数据收集与存储层,即基础层,各种类型的数据从不同渠道涌入,包括结构化数据(交易信息)、半结构化数据(日志信息)非结构化数据(多媒体、社交及定位信息等),在这个层面上,数据被实时和非实时地清理、加工,归档存储为有效数据,供后续分析运用。第二层,由数据上升到信息,形成信息整合层,在这个层面上需要对数据进行去噪和增强处理,实现关系型和非关系型信息的整合。第三层,从信息上升至知识,即知识发现层,在此层面,数据挖掘技术和人工智能至关重要,对整合的信息进行分解、提炼,从中找出有价值的信息点,实现信息到知识的转变。第四层,从知识上升到智慧,形成智慧汲取层,运用数据可视化工具,将经验、判断与知识相融合,使知识升华为智慧,为获取商业价值提供指导。
大数据正成为银行营销、创收和风控的利器
运用大数据构建客户全景视图,为客户制定差异化的产品及营销方案。通过大数据分析平台,接入客户通过社交网络、电子商务、终端媒介等方式形成的非结构化数据,包括客户的历史购买行为、年度消费水平、兴趣爱好、行为模式、社交圈及对媒体的响应等,这些外部大数据与银行的传统数据结合,就可以勾勒出真实完整的客户全景视图,之后实施针对性的产品设计和精准营销。比如,国外银行通过对客户的交易数据分析,推算出客户经历“人生大事”的大致节点,由于人生中这些重要时刻往往能够激发客户对高价值金融产品的购买,因此一些银行开始围绕客户的“人生大事”进行交叉销售。一家澳大利亚银行通过大数据分析发现,家中即将有婴儿诞生的客户对寿险产品的潜在需求最大。通过对客户银行卡交易数据分析,银行能够识别出即将添丁加口的家庭:在这些家庭,准妈妈会购买某些药品,与婴儿相关产品的消费会不断出现。这家银行为这类客户推出定制化的营销活动,获得了客户的积极回应,并大幅提高了交叉销售的成功率。
考核评价能力提升方面,智能管家的管理驾驶舱与集团客户管理功能使管理人员能够及时、准确地对机构、人员的绩效进行考核评价。考核评价是银行业务发展的指挥棒,是能否形成业务人员有效激励的关键。管理驾驶舱及时为管理人员提供创利、规模、风险、损益等八大维度核心指标信息,使管理人员对机构总体经营目标实现情况随时掌握。由于核心集团客户的综合创利、业务规模、风险状况对银行业绩举足轻重,因此,智能管家专门开发集团客户管理模块,使管理人员随时了解集团客户的规模、产品、创利、风险等关键指标,从而及时调整营销策略和授信政策。
大数据云端化
在金融集团层面上,民生银行已经建成对全行数据用户开放的阿拉丁大数据云平台是民生银行大数据应用的基础设施,使数据分析人员能够轻松、快速获取所需数据及分析结果。阿拉丁平台通过大数据的开放与共享,在民生银行内部形成各经营机构运用大数据“大众创业,万众创新”的良好生态。目前阿拉丁平台注册用户已覆盖民生银行所有分行和事业部,用户发布数据分析成果超过5000项。众多大数据应用成果中不乏精彩、成功的案例,比如,北京管理部基于大数据对小微客户进行信用评级,重庆分行通过客户通信、居住及出行大数据挖掘出潜在高价值客户等,这些大数据应用都显着改善了经营机构客户获取、产品营销、风险评级和运营管理,显示出阿拉丁云平台的强大功能。
工程实施路线图内容包括:分步建立关键基础数据标准以及关键指标标准;实现数据标准在重要业务系统中的落地应用;设计数据标准管理流程,依托数据标准管理系统和组织体系的建设,实现数据标准的系统化、规范化的管理。通过实施数据标准化工程,民生银行将打造一个专业、高效的数据标准化管理平台,数据标准管理在平台中通过工作流的方式实现。通过平台全行大数据用户能够快速获知数据标准的来源、标准的现状、标准与现实的映射以及重要业务标准的口径,真正实现全行关键数据的共享。
大数据移动化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12