京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家也可能被人工智能取代
由于人工智能取代人类活动的争论越来越激烈,数据科学家开始体验人工智能辅助自动化的好处和风险。
人们开始对人工智能被用来自动化一切事物的前景感到不安。现在人工智能已经证明了它有能力替代一些蓝领工作(通过机器人等)和白领职业(通过自然语言生成等),围绕这种技术的文化敏感度正在上升。
这也许可以解释为什么当谈到人工智能的影响时,开始看到人们使用“自动化”这样近似同义词的描述。当讨论自动化侵入到人工智能驱动应用程序的开发中时,一些观察者更喜欢使用诸如“操作化”,“生产化”,“扩充”和“加速”等术语。人们还看到围绕“自助服务”工具建立“可重复工作流程”等等的讨论,这听起来像是实现工作流程自动化的下一个逻辑步骤。
这种对“自动化”这个可怕字眼的厌恶,可能源于这样一个事实,即使是数据科学家也开始担心人工智能对于取代自己工作的潜在影响。正是在这种文化时代精神的考虑下,安德鲁·布鲁斯特(Andrew Brust)最近的一篇关于Alteryx“机器学习模型”的新操作工具的文章提供了一个非常好的讨论,不仅讨论了数据科学提高生产力的好处,而且讨论了来自其他供应商的不同解决方案,所有这些都不同程度地将自动化推向了数据科学开发、部署和优化工作流程。
在对Wikibon的研究中,人们看到“数据科学的开发者”的激增,这是自动化的另一种委婉说法。虽然布鲁斯特说,在数据科学工作流程中取代人工的前景“没有什么好处”,但显然具有很多功能并不完善,否则可能由不太熟练的数据科学家处理。
Alteryx的工具正处于前沿数据科学工具供应商现在所提供的主流,所以他们很好地展示了自动化数据科学家可以期待的方式:
在推广和部署阶段,无代码的Alteryx Designer tool自动生成定制的RESTAPI和机器学习模型的Docker镜像。
Alteryx新推出的工具,使用最近与Yhat获得的数据科学模型管理技术,在Alteryx Serveranalytics平台上自动部署模型执行。
Promote可以根据不断变化的应用程序需求自动缩放每个模型的运行时资源消耗。
设计师工作流程可以自动训练机器学习模型,使用新的数据接口,然后促进自动重新部署。
反过来,通过跟踪当前部署的模型版本并确保在生产中始终有一个足够的预测模型,从而自动确保模型治理。
也许不应该夸大自动化的潜力,把数据科学家放在这个困境上。如果有的话,数据科学自动化工具将帮助他们少花钱多办事。这些功能甚至可以减轻重复的任务,使数据科学家能够将他们的技能发展到更具创造性和挑战性的领域。自动化甚至可以让数据科学家避免职业劳动力短缺的困境。正如“麻省理工学院技术评论”最近的一篇文章所指出的那样,缺乏有技能的人员如果没有达到一定的自动化程度,就可能会让人工智能/机器学习革命中断。
即使熟练的数据科学家也无法掌握交易的每一个技巧,这为自动化工具打开了大门,可以帮助他们动态优化模型超参数。
自动化正在进入数据开发、部署和管理流程的每个部分。更多的数据专业人士正在采用工业级自动化功能,以加快数据采集、准备、清洗和交付等可重复过程的执行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06