
2018年大数据的五个发展趋势
如今,数据是已成为组织最大的资产之一,而随着2018年的到来,数据对组织的重要性将日益增长。
数字化变化的速度如此之快,以至于人们难以准确预测2018年的趋势。然而,可以肯定的是,大数据将继续影响商业世界的每一个角落。而且,如果人工智能和物联网的进步将继续占主导地位,那么人们很可能会看到更多的企业比以往更容易受到数据驱动。
随着2018年的临近,各种规模的组织将会探索数据驱动业务决策以及如何改善盈利的多种方式。以下是需要了解的五个大数据趋势。
1. 数据可视化将成为企业必备的手段
如今的组织正在接受分析文化,需要数据来支持他们的一举一动。然而,传统的商业智能(BI)方法往往无法释放数据的力量,因为它们往往太复杂、太僵化、速度太慢。
数据可视化或商业智能仪表盘将会得到越来越广泛的应用,因为它们可以帮助人们快速接受和消化最相关的信息。将图形和图表与功能强大且易于使用的业务分析相结合,意味着每个部门的用户不仅可以看到他们的组织如何实时执行,而且还可以采取必要的行动,防止小问题变成更大的问题,并挖掘新的机会。
2. 数据可视化将清理“脏数据”
由于数据来源越来越多,企业还将重点放在开发和驱动业务和营销战略上,清洁数据的需求越来越重要。但是,根据调查机构W8Data的研究发现,只有35%的组织定期进行数据清理。而很多企业还保留了大量的不完整的、不正确的、不一致的,以及重复的数据,而这些将会导致企业损失收入,浪费营销工作,错误的决策,以及企业声誉的损害。商业智能仪表盘可以帮助企业一目了然地查看最重要的数据,并定期和实时监控数据质量,从而清理这些“脏数据”。
3. 数据安全性的提高
数据只在可访问时才有用,但数据访问和安全性之间必须保持平衡。工作人员可能是组织的数据安全面临的最大风险,其责任将超越其领导团队。随着黑客利用向工作人员使用自助服务数据的转变,企业将再次成为网络攻击的对象。
企业会采取传统的商业智能方法,严格控制数据和报表,但这会导致分析的采用率降低,从而导致不明智的决策。现代商业智能将越来越受到青睐,因为它促进了数据治理,并有助于为自助式分析创建安全可靠的环境,从而产生准确、可访问和审核的仪表板和报告。
4. 首席数据官将被裁减
虽然有些人声称首席数据官(CDO)将会兴起,但人们可能会看到相反的情况。随着所有人都可以通过商业智能仪表盘进行数据分析,首席数据官(CDO)可能会变得多余。
数据可视化工具不仅易于提取和学习,还可以根据个人需求定制数据,因此每个成员可以关注部门至关重要的细节,节省了时间和精力。每个获得这些工具的用户都可以在一个操作视图中实现报告和预测的自动化。以这种方式清楚地呈现信息,将使决策者能够深入了解他们所需要的信息,并用它来绘制绩效图,确定趋势,并帮助预测未来的机会或要求来改变优先事项。
5. 改善GDPR合规性,以避免ICO罚款
欧盟即将实施“通用数据保护条例”(GDPR)的核心是保护消费者,这个新规则将从根本上改变如何收集、存储和删除数据。该规定要求组织知道他们在哪里持有客户的个人资料。因此,将不同来源的数据快速提取到商业智能仪表盘并理解的能力将比以往更加重要。
在商业智能仪表盘集中数据可以提供一个实时的真实版本,突出显示数据收集的任何差异,以及客户对使用其个人信息的认可。这种数据管理方法还揭示并解决了整个网络中“隐藏”的数据。
数据分析将成为2018年及以后企业所有业务决策的基础。 但是,一个组织拥有的数据要保持清洁。
商业智能仪表盘将是帮助企业获得未来一年技术创新的关键,以确保企业的数据完整、正确、一致、最新,并符合GDPR法规。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22