
2018年大数据的五个发展趋势
如今,数据是已成为组织最大的资产之一,而随着2018年的到来,数据对组织的重要性将日益增长。
数字化变化的速度如此之快,以至于人们难以准确预测2018年的趋势。然而,可以肯定的是,大数据将继续影响商业世界的每一个角落。而且,如果人工智能和物联网的进步将继续占主导地位,那么人们很可能会看到更多的企业比以往更容易受到数据驱动。
随着2018年的临近,各种规模的组织将会探索数据驱动业务决策以及如何改善盈利的多种方式。以下是需要了解的五个大数据趋势。
1. 数据可视化将成为企业必备的手段
如今的组织正在接受分析文化,需要数据来支持他们的一举一动。然而,传统的商业智能(BI)方法往往无法释放数据的力量,因为它们往往太复杂、太僵化、速度太慢。
数据可视化或商业智能仪表盘将会得到越来越广泛的应用,因为它们可以帮助人们快速接受和消化最相关的信息。将图形和图表与功能强大且易于使用的业务分析相结合,意味着每个部门的用户不仅可以看到他们的组织如何实时执行,而且还可以采取必要的行动,防止小问题变成更大的问题,并挖掘新的机会。
2. 数据可视化将清理“脏数据”
由于数据来源越来越多,企业还将重点放在开发和驱动业务和营销战略上,清洁数据的需求越来越重要。但是,根据调查机构W8Data的研究发现,只有35%的组织定期进行数据清理。而很多企业还保留了大量的不完整的、不正确的、不一致的,以及重复的数据,而这些将会导致企业损失收入,浪费营销工作,错误的决策,以及企业声誉的损害。商业智能仪表盘可以帮助企业一目了然地查看最重要的数据,并定期和实时监控数据质量,从而清理这些“脏数据”。
3. 数据安全性的提高
数据只在可访问时才有用,但数据访问和安全性之间必须保持平衡。工作人员可能是组织的数据安全面临的最大风险,其责任将超越其领导团队。随着黑客利用向工作人员使用自助服务数据的转变,企业将再次成为网络攻击的对象。
企业会采取传统的商业智能方法,严格控制数据和报表,但这会导致分析的采用率降低,从而导致不明智的决策。现代商业智能将越来越受到青睐,因为它促进了数据治理,并有助于为自助式分析创建安全可靠的环境,从而产生准确、可访问和审核的仪表板和报告。
4. 首席数据官将被裁减
虽然有些人声称首席数据官(CDO)将会兴起,但人们可能会看到相反的情况。随着所有人都可以通过商业智能仪表盘进行数据分析,首席数据官(CDO)可能会变得多余。
数据可视化工具不仅易于提取和学习,还可以根据个人需求定制数据,因此每个成员可以关注部门至关重要的细节,节省了时间和精力。每个获得这些工具的用户都可以在一个操作视图中实现报告和预测的自动化。以这种方式清楚地呈现信息,将使决策者能够深入了解他们所需要的信息,并用它来绘制绩效图,确定趋势,并帮助预测未来的机会或要求来改变优先事项。
5. 改善GDPR合规性,以避免ICO罚款
欧盟即将实施“通用数据保护条例”(GDPR)的核心是保护消费者,这个新规则将从根本上改变如何收集、存储和删除数据。该规定要求组织知道他们在哪里持有客户的个人资料。因此,将不同来源的数据快速提取到商业智能仪表盘并理解的能力将比以往更加重要。
在商业智能仪表盘集中数据可以提供一个实时的真实版本,突出显示数据收集的任何差异,以及客户对使用其个人信息的认可。这种数据管理方法还揭示并解决了整个网络中“隐藏”的数据。
数据分析将成为2018年及以后企业所有业务决策的基础。 但是,一个组织拥有的数据要保持清洁。
商业智能仪表盘将是帮助企业获得未来一年技术创新的关键,以确保企业的数据完整、正确、一致、最新,并符合GDPR法规。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30