
1. SVD 简介
SVD中文称为“奇异值分解”,是一种矩阵分解方法。其公式如下:
定理:设A为m*n阶复矩阵,则存在m阶矩阵U和n阶矩阵V,使得:
A = U*S*V’ 其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。
其中 A 矩阵是我们初始的特征矩阵,在文本挖掘中:A就是 t (term) 行 d (document) 列的矩阵,每列是一篇文章,每行是一个单词,每个单元格的当前单词在当前文章里的出现次数。 U 是一个 t 行 r 列 的矩阵, V 是一个 r 行 d 列 的矩阵, S 是一个 r 行 r 列的对角矩阵。这里 r 的大小是 A的秩。那么U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。( 关于秩是什么,特征值是什么,这个分解是怎么得到的,可以暂不去管)
注意,这个公式是等号,也就是等号左边完全等价于等号右边。换句话说我们只是把原来的A换了一种表示形式而已,并没有丢失任何信息。就好像 24 = 2 * 3 * 4 一样。 也正是因此,如果 LSI 直接使用 SVD 的话,不仅 r 是不可控的,而且 r 很可能很大以至于起不到降维效果,事实上这样做不仅没降维而且耗费了大量的运算时间。而 SVD 作为一种矩阵分解方法,也并非仅仅用在 LSI 中。Matlab中有直接的svd函数可以使用:[U,S,V] = svd(A)
2. LSI 对 SVD 的使用
LSI 对 SVD 做了一点改变,就是对 S 的 r 个对角线元素进行了排序,并只保留前 k 个值 ( k < r ), 后 r - k 个置零。此时,可以证明等式右边是在最小二乘意义下对等式左边的最佳近似。事实上这个过程是把数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。
看到这里,我们能得到最重要的启发就是,LSI 是通过舍弃不重要的特征向量来达到降维效果的,而又由于特征向量是根据矩阵运算得出的,因此 LSI 在降维的过程中不仅丢失了信息,而且还改变了信息。降维后的数据集仅仅是对原数据集的一种近似而非等价形式。且降维幅度越大,与原信息的偏离就越大。
3. LSI 的适用性
LSI 本质上是把每个特征映射到了一个更低维的子空间(sub space),所以用来做降维可以说是天造地设。在降维这块土地上还有另一位辛勤的耕耘者那就是TFIDF,TFIDF通过一个简单的公式(两个整数相乘)得到不同单词的重要程度,并取前k个最重要的单词,而丢弃其它单词,这里只有信息的丢失,并没有信息的改变。从执行效率上 TFIDF 远远高于 LSI,不过从效果上(至少在学术界)LSI 要优于TFIDF。
不过必须提醒的是,无论是上述哪一种降维方法,都会造成信息的偏差,进而影响后续分类/聚类的准确率。 降维是希望以可接受的效果损失下,大大提高运行效率和节省内存空间。然而能不降维的时候还是不要降维(比如你只有几千篇文档要处理,那样真的没有必要降维)
2)单词相关度计算
LSI 的结果通过简单变换就能得到不同单词之间的相关度( 0 ~ 1 之间的一个实数),相关度非常高的单词往往拥有相同的含义。不过不要被“潜在语义”的名称所迷惑,所谓的潜在语义只不过是统计意义上的相似,如果想得到同义词还是使用同义词词典靠谱。LSI 得到的近义词的特点是它们不一定是同义词(甚至词性都可能不同),但它们往往出现在同类情景下(比如“魔兽” 和 “dota”)。不过事实上直接使用LSI做单词相关度计算的并不多,一方面在于现在有一些灰常好用的同义词词典,另外相对无监督的学习大家还是更信任有监督的学习(分类)得到的结果。
3)聚类
直接用 LSI 聚类的情景我还没有见过,但使用该系列算法的后续变种 PLSI, LDA 进行聚类的的确有一些。其中LDA聚类还有些道理(因为它本身就假设了潜在topic的联合概率分布),用 LSI 进行聚类其实并不合适。本质上 LSI 在找特征子空间,而聚类方法要找的是实例分组。 LSI 虽然能得到看起来貌似是聚类的结果,但其意义不见得是聚类所想得到的。一个明显的例子就是,对于分布不平均的样本集(比如新闻类的文章有1000篇,而文学类的文章只有10篇), LSI/PLSI 得到的往往是相对平均的结果(A类500篇,B类600篇),这种情况下根本无法得到好的聚类结果。相对传统聚类方法k-means, LSI 系列算法不仅存在信息的偏差(丢失和改变),而且不能处理分布不均的样本集。
对于 LSI/PLSI 来说,聚类的意义不在于文档,而在于单词。所以对于聚类的一种变型用法是,当 k 设的足够大时,LSI/PLSI 能够给出落在不同子空间的单词序列,基本上这些单词之间拥有较为紧密的语义联系。其实这种用法本质上还是在利用降维做单词相关度计算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26