
Python判断两个对象相等的原理
大部分的python程序员平时编程的时候,很少关心两个对象为什么相等,因为教程和经验来说,他们就应该相等,比如1==1就应该返回True,可是当我们想要定义自己的对象或者修改默认的对象行为时,通常会因为不了解原理而导致各种奇奇怪怪的错误。
两个对象如何相等
两个对象如何才能相等要比我们想象的复杂很多,但核心的方法是重写 eq 方法,这个方法返回True,则表示两个对象相等,否则,就不相等。相反的,如果两个对象不相等,则重写 ne 方法。 默认情况下,如果你没有实现这个方法,则使用父类(object)的方法。父类的方法比较是的两个对象的ID(可以通过id方法获取对象ID),也就是说,如果对象的ID相等,则两个对象也就相等。因此,我们可以得知,默认情况下,对象只和自己相等。例如:
>>> class A(object):
... pass
...
>>>
>>> a = A()
>>> b = A()
>>> a == a
True
>>> a == b
False
>>> id(a)
4343310992
>>> id(b)
4343310928
Python2程序员经常犯的一个错误是,只重写了 eq 方法,而没有重写 ne 方法,导致不可预计的错误。而Python3会自动重写 ne 方法,如果你没有重写的话。
对象的Hash方法
Python里可Hash的对象,都有一个数字ID代表了它在python里的值,这个ID是由对象的 hash 方法返回的。因此,如果想让一个对象可Hash,那必须实现 hash 方法和之前提到的 eq 方法。和对象相等一样,默认情况下,对象的 hash 方法继承自Object对象,而Object对象的 hash 方法只计算对象ID,因此两个对象始终拥有两个不一样的hash id,不管他们是多么相似。 当我们把一个不可Hash的对象加入到set或者dict时,会发生什么了?
>>> set().add({})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
unhashable type: 'dict'
原因是set()和dict()使用对象的hash值作为内部索引,以便能快速索引到指定对象。因此,同一个对象返回相同的hash id就很重要了。
对象的Hash值在它的生命周期内不能改变
如果你想定义一个比较完美的对象,并且实现了 eq 和 hash 方法来定义对象的比较行为和hash值,那么你就需要保证对象的相关属性不能发生更改。不然会导致很诡异的错误,比如下面的例子。
>>> class C:
... def __init__(self, x):
... self.x = x
... def __repr__(self):
... return "C({"+str(self.x)+"})"
... def __hash__(self):
... return hash(self.x)
... def __eq__(self, other):
... return (
... self.__class__ == other.__class__ and
... self.x == other.x
... )
>>> d = dict()
>>> s = set()
>>> c = C(1)
>>> d[c] = 42
>>> s.add(c)
>>> d, s
({C(1): 42}, {C(1)})
>>> c in s and c in d # c is in both!
True
>>> c.x = 2
>>> c in s or c in d # c is in neither!?
False
>>> d, s
({C(2): 42}, {C(2)}) # but...it's right there!
在我们没有修改对象的属性时(c.x=2)之前,所有行为都符合预期。当我们通过c.x=2时修改属性后,执行c in s or c in d返回False,但是内容却是修改后的,是不是很奇怪。这也就解释了为什么str、tuple是可Hash的,而list和dict是不可hash的。
因此我们可以得出结论,如果两个对象相等的话,那它们的hash值必然也是相等的。
总结
讲了这么多有什么用了。 1. 当我们遇到unhashable type这个异常时,我们能够知道为什么报这个错误。 2. 如果定义了一个可比较的对象,那么最好保证对象hash值相关的属性在生命周期内不能发生改变,不然会发生意想不到的错误。
以上所述是小编给大家介绍的Python判断两个对象相等的原理,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10