
企业大数据:一座值得开垦的金矿
虽然尚处起步阶段,但是大数据已经成为多个行业的关注热点之一。如何更好地利用大数据推动自身业务的运营发展,这是众多企业不断探索的问题,而运营商也无法忽视这个未来的大金矿。
一、现阶段大数据业务市场状况
从全球情况来看,2015年全球大数据市场规模达到421亿美元,同比增长了47.7%。以此增速进行推算,到2020年全球大数据市场规模可突破3000亿美元。
今年年初,中国信息通信研究院日前发布的《中国大数据发展调查报告(2017)》称,2016年中国大数据市场规模达168亿元,预计2017年~2020年仍将保持30%以上的增长。调查显示,目前近六成企业已成立数据分析相关部门,超过1/3的企业已经应用大数据。
对比起全球情况,中国大数据产业市场规模增长还有很大空间。
二、运营商进入大数据行业思路
运营商先天优势在于掌控大量数据中心资源,这是大数据业务硬件基础。更为重要的是运营商本身拥有大量存量客户资源和客户数据,这也是对运营商进入大数据领域一个有力支撑。
运营商大数据业务运营SWOT分析:
三、运营商大数据业务发展对比
联通
今年9月,中国联通集团正式宣布,旗下的联通大数据有限公司正式揭牌成立。中国联通大数据公司定位于中国联通大数据对外集中运营主体和大数据产业拓展的合资合作平台,全面对接国家和联通集团战略,建立专业化子公司开展市场化运营、建设全产业链大数据生态体系。此外,联通还与中国银联签署了战略合作协议,双方决定建立长期稳定的合作伙伴关系,在数据资源、技术能力、产品研发等方面开展全方位合作。
电信
早在2015年末,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
电信所有的大数据都是在云平台和云设施之上搭建的,2016年下半年其大数据平台建设从原来的5个省份现在扩展到31个省份,数据种类从开始的几类主要数据扩展到十几类,实效性从原来以“周”为单位到现在以“小时”为单位的延时。
移动
在今年“世界电信和信息化社会日大会”上,中国移动通信集团公司副总经理李正茂表示:“发展大数据不是简单的建设IDC,根本目的还是为了应用。大数据正在从炒作的高峰期间,向产业落地期间发展。”
中国移动在六个方面积极推动大数据加速行业转型升级:
第一,社会管理方面,大数据能够分析用户的消费、行为、位置等特征,为政府的社会治理提供保障。
第二,信息传播,大数据成为公众获取信息的新渠道。移动借助位置漫游等信息向公众发布舆情热点的分析。
第三,医疗健康领域,中国移动构建健康云平台在贵州省取得成效,一方面帮助贵州卫集委收集信息,同时为政府医疗机构提供智能审核,疾病救助,疾病预防等多方面的投入,由此为当地医疗支出节省了上千万。
第四,行业创新能力提升,大数据为传统行业打造新的能力。中国移动的大数据提供人流预警,公交道路等服务,为公交管理,游客出行提供参考。
第五,社会热点问题处理支撑,中国移动基于大数据构建了反电信网络,欺诈防范技术体系,在2-10分钟可以识别市场号码源,来源区域,受害人集中地等等,同时实现最高风险等级,影响最大的境外异常号码源时时阻断。
第六,商业模式创新,2016年,中国移动和招商局集团共同投资设立试金石信用服务有限公司。
虽然三大运营商大数据布局在实际操作上不同,但是都明确把大数据从布局转移到实行阶段,软硬件资源日益充实,并且已经打造出不少成功案例。
四、布局大数据市场
1、攻坚热点领域
智慧城市
早在2014年,国家发改委会同中央网信办等25部委组成部际协调工作组,启动新型智慧城市试点建设。2016年又明确提出了到2018年要分级分类建设100个新型示范性智慧城市。
智慧城市建设带来的商机是巨大的,而大数据恰好在智慧城市建设中扮演重要角色。可以通过方方面面渗入,如城市交通、环境监测、治安管理、卫生管理等城市生活每个细节。
当然,运营商也已经对此领域有所行动。比如联通大数据公司就有“智慧足迹”这一项业务,提供“以人为本”的群体位置数据应用,为政府和企业提供包括人流量、人流密度、职住空间分布、人口时空分布在内的位置大数据解决方案。
政务
通过IDC、ICT基础通信业务为政府部门提供服务,并且为其构建大数据管理分析平台。政府运作效率和质量提升已经不仅仅拘泥于办理业务、处理业务时间上的减少,还要做到未雨绸缪,及时发现潜在民生问题,做好预防工作:比如通过婚姻注册数据挖掘离婚率提升因素,从而地提出针对性措施;又比如通过分析注册中小企业税务数据,了解税收政策对中小企业是否存在推进作用,有消极作用的加以改善。
医疗健康
根据前瞻产业研究院发布的《2017-2022年全球健康医疗大数据行业发展前景预测与投资战略规划分析报告》显示,2010年我国健康医疗大数据行业市场规模约为171亿元,到2015年快速增长到466亿元,年均复合增长率超过20%。
可穿戴设备的出现使到个人身体健康实时监测得到硬件上的支持,而把这个契机转化为商机就需要完善的大数据平台作为支撑。
而通信运营商涉足该领域也有很合适的切入口,比如利用存量家庭业务客户进行拓展,享受低资费优惠。
2、提升自身运营
运营商本身拥有着庞大数据资源,也应该很好地利用这些资源为自身运营提供动力。
一方面通过用户数据库做好用户维系和质量提升,对高危潜在离网用户及早挽留,而对潜在需求用户可以推广增值业务提升客户价值。
另一方面,涉及到数据交互(即通过与其他行业合作,双方数据通过融合整理)发掘出的更多有价值结论,能支撑双方运营,互惠互利。
五、大数据业务营销
通过IDC建设、产品建设打好基础,进行业务营销就是下一步关键所在。进行大数据业务营销通过标杆打造+体验营销是较好选择。
由于业务属于起步阶段,要吸引到市场目光和认同,必须树立业务标杆。在硬件和软件有实力的前提下,运营商要打造专业化团队,树立行业顶尖形象,以优质案例打动潜在客户。
营销人员在向潜在客户推销产品时,需要结合案例详解、实体考察、便携式设备体验进行销售活动,以具体化、专业化的方式打动客户。
需要明确的是,大数据硬件软件方面做好后,剩下最关键一环就是在营销上打动客户。
如何打动客户?用事实说话
例如2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。2014年罗斯柴尔德再次成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。在这种震撼的事实面前,展现大数据的实用性和威力。
六、展望
由于各行各业各领域都能够有机会用到大数据分析为管理运营作支撑,所以大数据业务发展潜力毋容置疑。现在对运营商而言,做好硬件软件基础的同时,更要深挖市场需求,打造营收模式标杆,以点带面地实现业务快速增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11