
大数据的价值在于应用
大数据,就是存储在各种存储介质中的海量的各种形态数据,具有5V特点,即:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。大数据之“大”,不仅在于其“大容量”,更在于其“大价值”,并已成为除人力、土地、财务、技术之外的另一种重要的资源。
建设现代化经济体系离不开大数据发展和应用。构建以数据为关键要素的数字经济,就要着力推动实体经济和数字经济融合发展,让大数据成为建设现代化经济体系的重要基石。
大数据是企业跨界融合发展的驱动力
作为一种资源,企业利用大数据,可以更加敏锐地感知周边的变化,更加深邃地洞察客户、消费者以及合作伙伴们的行为和变化趋势,更加精准地优化企业的运营,更加和谐地与商业伙伴一起开展协同创新。大数据正在重塑企业,重新定义行业,正成为跨界融合发展的驱动力。
以中华全国总工会在推动的“工惠驿家”为例,它以“互联网+”、大数据、物联网、人工智能等新一代信息技术,为行走在全国各地公路上的3000多万货运司机职工提供高频度、高黏度、普惠性服务。
货车运行在全国各地的公路上,通过车载智能终端,可以实时、全域采集道路、环境数据,可以准确分析出全国各条高速公路的流量分布、货物流向分布、空气环境状态等,为行车安全、道路管理、物流管理、环境治理提供决策依据。可以通过货车司机的驾驶习惯、生命体征数据,设计符合每个司机特征的保险方案;通过货运司机行为轨迹数据,设计贴近货运司机需求的休息、餐饮、盥洗、康乐、学习等为一体的司机驿站;可以通过司机对汽车的维修、更新,创造出智慧、人性化、风光电互补新动能的新概念货车;对围绕货车司机的生活资料和生产资料的配套服务,还可以衍生出包括金融服务在内的各种行业服务,为智能化货运物流宏观管理奠定基础。
随着可分析和使用数据的大量增加,通过对这些数据的挖掘、脱敏、脱密、分析、应用、叠加应用,可以发现新的知识,创造新的价值,带来“大知识”“大科技”“大服务”和“大发展”。数据将和企业的固定资产、人力资源一样,成为生产过程中的重要基本要素。
挖掘被淹没的数据价值
要使大数据真正产生价值,就必须要研究数据的关联、数据的聚类以及全样本问题。建立在相关关系分析法基础上的预测是大数据的核心,通过找出关联物并监控它,就能预测未来。
仍以“工惠驿家”项目为例,“人、车、货、路、工会”各种数据产生于公路物流的各个环节、产生于全国800多万个工会组织,数据量巨大,价值密度低,实时在线,多源异构。为了让大数据对服务货运司机和工会组织发挥作用,针对不同的应用场景,首先要找出与应用场景的关联。例如,紧急事故救援,可以按事故类型,找出主要关联,快速把人员信息、货物信息、时间、地点、救援设施、医疗机构、保险机构等与救援相关的数据关联起来,配合预案模型,及时实施救援方案。
数据聚类,是从大数据中发现价值必须面对的一个普遍性、基础性问题。比如上述救援,有多种救援设施及多个同城医疗机构,在数据分析、处理上可首先把与救援机构、医疗机构的数据聚类,再根据事故的类型、受伤的情况,选择出最优的救援和医疗服务方案,这样才能做到及时、高效。
传统的数据样本基础是采样的绝对随机性,随机样本带给我们的只能是事先预设问题的答案。大数据时代,全样本的数据成为现实,全样本数据带给我们视角上的宏观性与全面性,这将使我们可以站在更高的层级全貌看待问题,看见曾经被淹没的数据价值,发现藏匿在整体中有趣的细节,使我们获得从不同的角度更细致、更全面地观察研究数据的可能性,从而使得大数据的分析过程,成为发现过程和问题域的拓展过程。基于近乎全样本并实时获取的海量数据,不断积累并形成有着巨大价值的社会资源。
推动实体经济和数字经济融合发展
大数据产业的发展,离不开两个核心系统工程建设,即稳定、安全、可靠的数据基础系统工程和完善、成熟、领先的应用系统工程。
发展大数据的关键,是要有获得数据的能力和方法,获得的数据不仅要及时、完整、准确地存储下来,而且要及时、完整、准确地传输到数据需求者。有了数据,还必须有足够的计算能力,因此基础系统工程包括了数据采集、汇聚、传输、存储、计算资源、大数据应用平台、云计算平台、数据资源池、数据分析挖掘工具软件、数据产权管理、数据标准体系、数据安全体系等。
目前,各行各业的决策正在从“业务驱动”向“数据驱动”转变。通过对大数据的分析,可以使企业实时掌握市场动态并迅速做出应对,可以制定更加精准有效的营销策略,可以帮助企业为消费者提供更加及时和个性化的服务。在公共事业领域,大数据在促进经济发展、维护社会稳定等方面的重要作用已开始得以发挥。因此,大数据应用系统建设,是大数据作为重要资源作用的关键。
从2009年开始,润泽科技就一直在研究数据产业发展趋势,投资建设国际一流的高标准数据基础设施,成为京津冀最具活力的数据产业平台基地。2016年,润泽科技投资建设了京津冀大数据创新应用中心,并被列为京津冀大数据综合试验区重点工程。应用中心引入了前瞻性的大数据技术,集聚了具有代表性的大数据企业,旨在构建大数据创新应用中心,为实体经济和数字经济融合创建大数据应用服务平台,吸引了大批国内外顶尖的大数据人才。
京津冀大数据创新应用中心将展现全球最新的大数据应用技术,聚焦更好地解决社会问题、商业营销问题和科学技术问题,辅助政府实现经济调控、城市管理、疾病防控、灾害预警、舆情分析、预防犯罪等。通过大数据分析手段,预判未来的发展趋势,为政府治理和决策提供及时的数据分析,改变人们的思维和决策方式,实现价值创造并触发新的价值增长,促进大数据产业健康、绿色、良性发展。
当前,大数据应用进入了广泛而快速的发展阶段,我们要坚持以供给侧结构性改革为主线,加快发展数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合,继续做好信息化和工业化深度融合这篇大文章。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15