京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python金融大数据分析-蒙特卡洛仿真
1.简单的例子
了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础。
我们假设现在一个股票的价值是100,那么两年后是多少呢?
[python]view plaincopy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
S0 = 100
r = 0.05
sigma = 0.25
T = 2.0
I = 10000
ST1 = S0*np.exp((r - 0.5*sigma**2)*T+sigma*np.sqrt(T)*np.random.standard_normal(I))
plt.hist(ST1,bins = 50)
plt.xlabel('price')
plt.ylabel('ferquency')
运行的结果如下所示:

很明显,是一个lognormal分布,因为这样的假设下,价格符合lognormal分布,收益率符合正态分布。
2.简单的蒙特卡洛路径
上面是一步到位的,那么如果我们中间分很多个小时间段来仿真呢?可以知道,物理问题是一样的,结果也不会有差异。
[python]view plaincopy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as scs
S0 = 100
r = 0.05
sigma = 0.25
T = 2.0
I = 10000
#ST1 = S0*np.exp((r - 0.5*sigma**2)*T+sigma*np.sqrt(T)*np.random.standard_normal(I))
#plt.hist(ST1,bins = 50)
#plt.xlabel('price')
#plt.ylabel('ferquency')
M = 50
dt = T/M
S = np.zeros((M + 1,I))
S[0] = S0
print S[0]
for t in range(1,M+1):
S[t] = S[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*np.sqrt(dt)*np.random.standard_normal(I))
plt.hist(S[-1],bins = 50)
plt.xlabel('price')
plt.ylabel('frequency')
plt.show()
plt.plot(S[:,:],lw = 1.5)
plt.xlabel('time')
plt.ylabel('price')
plt.show()

我们不仅可以得到最终的分布,也可以知道价格路径,而这一价格路径,才是真正代表了蒙特卡洛的精髓。
如果我们绘制得路径更加多一点,就是这样的一个效果:

从侧面看,其实就是一个lognormal分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20