
Python金融大数据分析-蒙特卡洛仿真
1.简单的例子
了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础。
我们假设现在一个股票的价值是100,那么两年后是多少呢?
[python]view plaincopy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
S0 = 100
r = 0.05
sigma = 0.25
T = 2.0
I = 10000
ST1 = S0*np.exp((r - 0.5*sigma**2)*T+sigma*np.sqrt(T)*np.random.standard_normal(I))
plt.hist(ST1,bins = 50)
plt.xlabel('price')
plt.ylabel('ferquency')
运行的结果如下所示:
很明显,是一个lognormal分布,因为这样的假设下,价格符合lognormal分布,收益率符合正态分布。
2.简单的蒙特卡洛路径
上面是一步到位的,那么如果我们中间分很多个小时间段来仿真呢?可以知道,物理问题是一样的,结果也不会有差异。
[python]view plaincopy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as scs
S0 = 100
r = 0.05
sigma = 0.25
T = 2.0
I = 10000
#ST1 = S0*np.exp((r - 0.5*sigma**2)*T+sigma*np.sqrt(T)*np.random.standard_normal(I))
#plt.hist(ST1,bins = 50)
#plt.xlabel('price')
#plt.ylabel('ferquency')
M = 50
dt = T/M
S = np.zeros((M + 1,I))
S[0] = S0
print S[0]
for t in range(1,M+1):
S[t] = S[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*np.sqrt(dt)*np.random.standard_normal(I))
plt.hist(S[-1],bins = 50)
plt.xlabel('price')
plt.ylabel('frequency')
plt.show()
plt.plot(S[:,:],lw = 1.5)
plt.xlabel('time')
plt.ylabel('price')
plt.show()
我们不仅可以得到最终的分布,也可以知道价格路径,而这一价格路径,才是真正代表了蒙特卡洛的精髓。
如果我们绘制得路径更加多一点,就是这样的一个效果:
从侧面看,其实就是一个lognormal分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22