京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之随机数与抽样模拟篇
R语言生成均匀分布随机数的函数是runif()
句法是:runif(n,min=0,max=1) n表示生成的随机数数量,min表示均匀分布的下限,max表示均匀分布的上限;若省略参数min、max,则默认生成[0,1]上的均匀分布随机数。
例1:
> runif(5,0,1) # 生成5个[0,1]的均匀分布的随机数
[1] 0.5993 0.7391 0.2617 0.5077 0.7199
> runif(5) # 默认生成5个[0,1]上的均匀分布随机数
[1] 0.2784 0.7755 0.4107 0.8392 0.7455
例2
随机产生100个均匀分布随机数,作其概率直方图,再添加均匀分布的密度函数线,程序如下:
> x=runif(100)
> hist(x,prob=T,col=gray(.9),main="uniform on [0,1]")
> curve(dunif(x,0,1),add=T) #添加均匀分布的密度函数线
3.1.2 正态分布随机数
正态分布随机数的生成函数是 rnorm()
句法是:rnorm(n,mean=0,sd=1) 其中n表示生成的随机数数量,mean是正态分布的均值,默认为0,sd是正态分布的标准差,默认时为1;
例:
随机产生100个正态分布随机数,作其概率直方图,再添加正态分布的密度函数线
> x=rnorm(100)
> hist(x,prob=T,main="normal mu=0,sigma=1")
> curve(dnorm(x),add=T)
3.1.3 二项分布随机数
二项分布是指n次独立重复贝努力试验成功的次数的分布,每次贝努力试验的结果只有两个,成功和失败,记成功的概率为p
生成二项分布随机数的函数是:rbinom()
句法是:rbinom(n,size,prob) n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率
例:
产生100个n为10,15,50,概率p为0.25的二项分布随机数:
> par(mfrow=c(1,3))
> p=0.25
> for( n in c(10,20,50))
{ x=rbinom(100,n,p)
hist(x,prob=T,main=paste("n =",n))
xvals=0:n
points(xvals,dbinom(xvals,n,p),type="h",lwd=3)
}
> par(mfrow=c(1,1))
3.1.4 指数分布随机数
R生成指数分布随机数的函数是:rexp()
其句法是:rexp(n,lamda=1) n表示生成的随机数个数,lamda=1/mean
例:
>x=rexp(100,1/10) # 生成100个均值为10的指数分布随机数
>hist(x,prob=T,col=gray(0.9),main=“均值为10的指数分布随机数”)
>curve(dexp(x,1/10),add=T) #添加指数分布密度线
3.1.5 常见的分布函数
产生分布的随机数,只需要在相应的分布前加r就行
表 3-1 常见分布函数表
分布 中文名称 R中的表达 参数
Beta 贝塔分布 beta(a,b) shape1, shape2
Binomial 二项分布 binom(n,p) size, prob
Cauchy 柯西分布 cauchy( ) location, scale Chi-square 卡方分布 chisq(df)
df Exponential 指数分布 exp(lamda) rate F F分布 f(df1,df2) df1
df2
Gamma 伽玛分布 gamma() shape rate
Geometric 几何分布 geom() prob Hypergeometric 超几何分布 hyper() m,n,k
Logistic 逻辑分布 logis() location scale
Negative binomial 负二项分布 nbinom() size prob
Normal 正态分布 norm() mean, sd Multivariate normal 多元正态分布 mvnorm() mean,cov
Poisson 泊松分布 pois() lambda T t 分布 t() df
Uniform 均匀分布 unif() min, max Weibull 威布儿分布 weibull() shape, scale
Wilcoxon 威尔考可森分布 wilcox() m, n
表 3-2 与分布相关的函数及代号
函数代号 函数作用
r- 生成相应分布的随机数
d- 生成相应分布的密度函数
p- 生成相应分布的累积概率密度函数
q- 生成相应分布的分位数函数
例:
dnorm表示正态分布密度函数
pnorm表示正态分布累积概率密度函数
qnorm表示正态分布分位数函数(即正态累积概率密度函数的逆函数)
3.2 随机抽样
3.2.1 放回与无放回抽样
R可以进行有放回、无放回抽样
sample()函数即可以实现
句法为:sample(x,n,replace=F,prob=NULL)
3.3 统计模拟
3.3.1 几种常见的模拟方法
1 中心极限定理:
3 用函数进行模拟
指定模拟次数m=100,样本量n=10,概率=0.25,如果要改变这些参数来重新进行模拟将会很麻烦,下面将展示如何将上面的程序形成一个模拟函数再进行模拟。
> sim.clt <- function (m=100,n=10,p=0.25)
{ z = rbinom(m,n,p)
x = (z-n*p)/sqrt(n*p*(1-p))
hist(x,prob=T,breaks=20,main=paste("n =",n,”p =”,p))
curve(dnorm(x),add=T)
}
> sim.clt() # 默认 m=100,n=10,p=0.25
> sim.clt(1000) # 取 m=1000,n=10,p=0.25
> sim.clt(1000,30) # 取 m=1000,n=30,p=0.25
> sim.clt(1000,30,0.5) # 取 m=1000,n=30,p=0.5
4 正态概率模拟
能比直方图更好判定随机数是否近似服从正态分布的是正态概率图。
其基本思想是:作实际数据的分位数与正态分布数据的分位数的散点图,也就是作样本分位数与理论分位数的散点图。
3.3.2 模拟函数的建立方法
若每次模拟都要编写一个循环,非常麻烦.
sim.fun()就是专门用来解决这类问题的
只需要编写一个用来生成随机数的函数,剩下的工作就交给sim.fun来完成
sim.fun <-function (m,f,...) # m 模拟样本次数,f需模拟的函数
{
sample <-1:m
for (i in 1:m) {
sample[i] <-f(...)
}
sample
}
例:
二项分布:
先编写一个函数用来生成一个二项分布随机的标准化值
>f<-function(n=10,p=0.5){s=rbinom(1,n,p);(s-n*p)/sqrt(n*p*(1-p)) }
> x=sim.fun(1000,f) # 模拟1000个二项随机数
> hist(x,prob=T)
均匀分布来模拟中心极限定理:
> f = function(n=10) (mean(runif(n)-1/2)/(1/sqrt(12*n))
> x=sim.fun(1000,f) # 模拟1000个均匀随机数
> hist(x,prob=T)
正态分布:
>f=function(n=10,mu=0,sigma=1){r=rnorm(n,mu,sigma);(mean(r)-m
u)/(sigma/sqrt(n)) }
> x = sim.fun(1000,f) #模拟1000个样本量为10的N(0,1)随机数
> hist(x,breaks=10,prob=T)
> x = sim.fun(1000,f,30,5,2) # 模拟1000个样本量为30的N(5,4)随机数
> hist(x,breaks=10,prob=T)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27