
缺失数据处理-插值法
在数据挖掘中,原始海量的数据中存在着大量不完整、不一致、有异常、偏离点的数据。这些问题数据轻则影响数据挖掘执行效率,重则影响执行结果。因此数据预处理工作必不可少,而其中常见工作的就是数据集的缺失值处理。
数据缺失值处理可分两类。一类是删除缺失数据,一类是进行数据插补。前者比较简单粗暴,但是这种方法最大的局限就是它是以减少历史数据来换取数据的完备,会造成资源的大量浪费,尤其在数据集本身就少的情况下,删除记录可能会直接影响分析结果的客观性和准确性
本文介绍数据常用的插补方法。对拉格朗日插值法和滑动平均窗口法进行重点介绍和实现。
介绍
常用的插值方法如下:
这里只对插值法和窗口滑动平均进行介绍。
滑动平均窗口法
概念:
一个列表a 中的第 i 个位置数据为缺失数据,则取前后 window 个数据的平均值,作为插补数据。
示例:
a = [3,4,5,6,None,4,5,2,5] 、 window = 3
则 None位置的数据为:(4+5+6+4+5+2)/6 = 2.67
拉格朗日插值法
概念
根据数学概念可知,对于平面上已知的n个点(无两点在一条直线上)可以找到一个n-1次的多项式,使此多项式通过这n个点。
因此我们需先求得多项式函数L(x),然后将缺失值对应的点x带入插值多项式得到缺失值的近似值L(x)。多项式函数L(x)的求法如下:
实现
代码
# coding:utf-8
# 拉格朗日插值代码
import pandas as pd # 导入数据分析库Pandas
from scipy.interpolate import lagrange # 导入拉格朗日插值函数
# 构建原始数据
data = pd.DataFrame([
["2015/3/1", 59],
["2015/2/28", 2618.2],
["2015/2/27", 2608.4],
["2015/2/26", 2651.9],
["2015/2/25", 3442.1],
["2015/2/24", 3393.1],
["2015/2/23", 3136.6],
["2015/2/22", 3744.1],
["2015/2/21", ],
["2015/2/20", 4060.3],
["2015/2/19", 3614.7],
["2015/2/18", 3295.5],
["2015/2/16", 2332.1],
["2015/2/15", 2699.3],
["2015/2/14", ],
["2015/2/13", 3036.8],
["2015/2/12", 1865],
["2015/2/11", 3014.3],
["2015/2/10", 2742.8],
["2015/2/9", 2173.5],
["2015/2/8", 3161.8],
["2015/2/7", 3023.8],
["2015/2/6", 2998.1],
], columns=[u'日期', u'销量'])
# 设置异常值,把销量大于5000和销量小于400的异常值替换为None
data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] = None
# 把要处理的数据取出来,pandas中dataframe格式单独取出一列就是series数据格式
tmp_data_1 = data[u'销量'].copy()
tmp_data_2 = data[u'销量'].copy()
def ployinterp_column(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()] # 剔除空值
return lagrange(y.index, list(y))(pos) # 插值并返回插值结果
def sma_mothod(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()]
return reduce(lambda a, b: a + b, y) / len(y)
for j in range(len(tmp_data_1)):
if (tmp_data_1.isnull())[j]: # 如果为空即插值。
tmp_data_1[j] = ployinterp_column(tmp_data_1, j)
print j, data.loc[j, u'日期'], tmp_data_1[j]
print
for j in range(len(tmp_data_2)):
if (tmp_data_2.isnull())[j]: # 如果为空即插值。
tmp_data_2[j] = sma_mothod(tmp_data_2, j)
print j, data.loc[j, u'日期'], tmp_data_2[j]
输出
0 2015/3/1 -291.4
8 2015/2/21 4275.25476248
14 2015/2/14 3680.66999227
0 2015/3/1 2942.74
8 2015/2/21 3236.97
14 2015/2/14 2883.43
分析
对比之下,滑动窗口方法的输出都还比较合理。但显而易见的是拉格朗日插值对0位置的数据处理的很不好,插值为
-291.4。拟合点的数据格式为(x,y),具体数据:(1, 2618.2), (2, 2608.4),(3, 2651.9),(4,
3442.1), (5, 3393.1)。我们把拉格朗日多项式打印出来:
L(x) = -94.97 x^4 + 1065 x^3 - 3991 x^2 + 5930 x^1 - 291.4
把 x= 0 带入得到 L(x),就得到了 -291.4。这里x=0就是L(x)的截距。直观感觉就不太合理,猜测就是拉格朗日插值法对边缘数据敏感(即插值需要左右两边数据提供信息,在缺失左边数据信息情况下,得到的结果就不太合理),日后求证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11