京公网安备 11010802034615号
经营许可证编号:京B2-20210330
缺失数据处理-插值法
在数据挖掘中,原始海量的数据中存在着大量不完整、不一致、有异常、偏离点的数据。这些问题数据轻则影响数据挖掘执行效率,重则影响执行结果。因此数据预处理工作必不可少,而其中常见工作的就是数据集的缺失值处理。
数据缺失值处理可分两类。一类是删除缺失数据,一类是进行数据插补。前者比较简单粗暴,但是这种方法最大的局限就是它是以减少历史数据来换取数据的完备,会造成资源的大量浪费,尤其在数据集本身就少的情况下,删除记录可能会直接影响分析结果的客观性和准确性
本文介绍数据常用的插补方法。对拉格朗日插值法和滑动平均窗口法进行重点介绍和实现。
介绍
常用的插值方法如下:

这里只对插值法和窗口滑动平均进行介绍。
滑动平均窗口法
概念:
一个列表a 中的第 i 个位置数据为缺失数据,则取前后 window 个数据的平均值,作为插补数据。
示例:
a = [3,4,5,6,None,4,5,2,5] 、 window = 3
则 None位置的数据为:(4+5+6+4+5+2)/6 = 2.67
拉格朗日插值法
概念
根据数学概念可知,对于平面上已知的n个点(无两点在一条直线上)可以找到一个n-1次的多项式,使此多项式通过这n个点。

因此我们需先求得多项式函数L(x),然后将缺失值对应的点x带入插值多项式得到缺失值的近似值L(x)。多项式函数L(x)的求法如下:

实现
代码
# coding:utf-8
# 拉格朗日插值代码
import pandas as pd # 导入数据分析库Pandas
from scipy.interpolate import lagrange # 导入拉格朗日插值函数
# 构建原始数据
data = pd.DataFrame([
["2015/3/1", 59],
["2015/2/28", 2618.2],
["2015/2/27", 2608.4],
["2015/2/26", 2651.9],
["2015/2/25", 3442.1],
["2015/2/24", 3393.1],
["2015/2/23", 3136.6],
["2015/2/22", 3744.1],
["2015/2/21", ],
["2015/2/20", 4060.3],
["2015/2/19", 3614.7],
["2015/2/18", 3295.5],
["2015/2/16", 2332.1],
["2015/2/15", 2699.3],
["2015/2/14", ],
["2015/2/13", 3036.8],
["2015/2/12", 1865],
["2015/2/11", 3014.3],
["2015/2/10", 2742.8],
["2015/2/9", 2173.5],
["2015/2/8", 3161.8],
["2015/2/7", 3023.8],
["2015/2/6", 2998.1],
], columns=[u'日期', u'销量'])
# 设置异常值,把销量大于5000和销量小于400的异常值替换为None
data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] = None
# 把要处理的数据取出来,pandas中dataframe格式单独取出一列就是series数据格式
tmp_data_1 = data[u'销量'].copy()
tmp_data_2 = data[u'销量'].copy()
def ployinterp_column(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()] # 剔除空值
return lagrange(y.index, list(y))(pos) # 插值并返回插值结果
def sma_mothod(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()]
return reduce(lambda a, b: a + b, y) / len(y)
for j in range(len(tmp_data_1)):
if (tmp_data_1.isnull())[j]: # 如果为空即插值。
tmp_data_1[j] = ployinterp_column(tmp_data_1, j)
print j, data.loc[j, u'日期'], tmp_data_1[j]
print
for j in range(len(tmp_data_2)):
if (tmp_data_2.isnull())[j]: # 如果为空即插值。
tmp_data_2[j] = sma_mothod(tmp_data_2, j)
print j, data.loc[j, u'日期'], tmp_data_2[j]
输出
0 2015/3/1 -291.4
8 2015/2/21 4275.25476248
14 2015/2/14 3680.66999227
0 2015/3/1 2942.74
8 2015/2/21 3236.97
14 2015/2/14 2883.43
分析
对比之下,滑动窗口方法的输出都还比较合理。但显而易见的是拉格朗日插值对0位置的数据处理的很不好,插值为
-291.4。拟合点的数据格式为(x,y),具体数据:(1, 2618.2), (2, 2608.4),(3, 2651.9),(4,
3442.1), (5, 3393.1)。我们把拉格朗日多项式打印出来:
L(x) = -94.97 x^4 + 1065 x^3 - 3991 x^2 + 5930 x^1 - 291.4
把 x= 0 带入得到 L(x),就得到了 -291.4。这里x=0就是L(x)的截距。直观感觉就不太合理,猜测就是拉格朗日插值法对边缘数据敏感(即插值需要左右两边数据提供信息,在缺失左边数据信息情况下,得到的结果就不太合理),日后求证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27