京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在保险中的实时应用
几十年来,保险业一直在努力处理交易和风险管理方面的数据。电信与数据融合的前沿趋势让保险公司对客户行为有了新的认知,而这被称之为“大数据”。数据具有广泛性、多样性的特点,特别是能将传统的关系型数据库管理技术推向极致,并且让人们越来越关注数据管理的新方法。大数据、分析和数据管理齐头并进;美国1.1万亿美元保险市场的各家公司正在争先恐后地开展自己的数据分析实践。
大数据的实时应用案例
大数据技术可以使公司评估非结构化数据由不可行变为可行。这里将介绍一些大数据技术在保险领域的应用案例。
欺诈识别
大数据已经帮助保险人做出了改变。而今他们超越了以索赔为中心和以人为中心的算法欺诈检测技术。这些技术侧重于分析索赔方、保险供应方和其他的信息来源(例如,同一个被保险人提交了多少份类似的索赔请求),并扩展到防火墙之外的数据源,以便基于外部信息分析(例如队列分析 - 使用一个人的社交圈子来分析相关个体之间的类似行为),这里考虑到的是一群互相联系的人而不仅仅是一个人。
在美国,每年健康保险欺诈给保险业带来大约700亿到2600亿美元的损失;欧盟也有300亿到1000亿美元的损失。
欺诈检测和预防主要通过两种方法实现:
基于实时数据分析的欺诈审计规则(基于历史数据的传统类型)
欺诈预测记分卡(基于实时数据的新类型)
客户关系管理(CRM)
所有的非结构化数据都可以提供给所有的保险公司,这可以成为“大数据分析”方法的基础。一些非结构化数据源包括:
客户线上文档
如果这些文档可以被轻松搜索到并且能汇集到企业的数据管理平台,那么保险公司就可以获得关于客户的大量信息,包括对非标准、非结构化的生命健康的医疗报告信息,以及再保险和大型商业财产保险部门的信息。
客户关怀通话记录
这些内容包含了客户来电自由形式的代表性评论,这些评论可以用来进行市场情绪调研,有助于形成策略和付诸实践,以提高客户的保留率,减少客户流失。
点击流数据
由面向客户的网站生成,可以分析这些数据,以发现显示客户倾向的浏览模式,尤其是当与呼叫中心记录相关的时候,找出那些客户在网络交互后立即呼叫的例子。
索赔管理
大数据也与索赔管理息息相关:运营商希望在索赔流程期间保存好图像、视频和文本标记(例如,来自警察检查员或拖车司机的汽车保险索赔的文本标记)。结合投保人和受益人几个实体(受益人、投保人、保险人)的汇总信息对非结构化数据的大数据分析变得尤为重要。
承保
在再保险和大型商业保险部门,大量的支持信息会作为信息提交的一部分(例如,损失历史、财产计划、车辆调度和董事的详细信息)。
大数据技术使保险公司能够快速地存储和访问任何数据,以便他们能够通过分析来突出异常、某种模式和部分重点——这是人工阅读文档时代非常困难的事情。自动化数据管理的能力,以及记录支持文档的能力,使保险公司能够创建风险和客户档案,这在整个公司中都是统一可审计的并且能够提供丰富的分析资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05