
2018年将会改变人工智能的5个大数据趋势
随着大数据和人工智能的广泛应用,这些新兴技术的庞大影响力遍及全球经济,如今的投资者和企业家们迫切希望在2018年取得这些创新成果,正在开始确定将要定义这些技术创新的主要趋势。那么,当今的人工智能和大数据热潮背后的推动力究竟是什么呢?渴望投资于这一现象的投资者能做出什么样的准备呢?
事实证明,到目前为止,界定人工智能革命的许多力量仍然在起作用,并将继续定义人工智能在2018年如何影响市场。通过了解和熟悉这五大新兴趋势,企业和业界人士将在新的一年即将到来之际,充分利用和发挥大数据和基于人工智能的解决方案的作用。
1. 更多关注零售
在最近的大数据和人工智能的应用热潮中,几乎没有哪个领域像人工智能这样可以让企业受益。无论是沃尔玛还是当地的母婴店,各地的企业似乎都在利用这些技术来降低管理费用,同时扩大业务范围。例如,客服人员可能会被人工智能助理彻底取代,但更重要的是,零售商可以通过人工智能跟踪他们的库存,而消费者的兴趣很快就会发生革命性的变化。
随着越来越多的零售商将大数据和人工智能应用到他们的商业模式中,预计这个行业现在可以利用人力和机器的力量来获得更多的利润。此外,由于更多的企业加入并将其应用于自己的业务中,人工智能可能会继续得到更多的投资。
2. 暗数据的新纪元
随着大数据的增长,利用暗数据获得商业成功的机会也将随之增加。所谓的暗数据就是企业正常商业活动期间搜集,处理,存储的数据。但这些数据通常无法用于诸如分析,商业关系或者是直接变现获利等目的。对于并不熟悉人工智能和数据管理领域的许多人来说,这种数据不断被证明是有用的。
暗数据可能难以让人理解,但随着越来越多的企业投资人工智能,这些迷惑可能就会消散,并导致人们对正在进行的数据革命的热情更高。
3. 人工智能和云计算的结合
随着越来越多的企业采用人工智能解决方案以应对其业务困境,其中许多公司将寻求加强其IT基础设施,并将业务转向云端。随着大数据应用者的规模越来越大,人工智能越来越成为一种主流,随之而来的数据需求将给企业的本地服务器带来更大的负担,这意味着他们需要在别处满足他们的数据需求。
云计算非常适合帮助满足和管理这些不断增长的需求,因为内部部署的服务器和数据管理对于企业来说变得过于混乱并且成本高昂。
4. 更加智能的市场营销
市场营销是利用大数据的力量革命化的关键领域之一,通过梳理大量的数据,企业能够比以往任何时候都更准确地针对特定的消费者,将广告和交易直接发送到潜在消费者的邮箱或家门口。
随着越来越多的公司试图利用自动算法来分类数据以找到潜在的客户,人工智能领域将受益于行业投资的增加。而实时定位可以为正确使用的公司带来20%以上的销售机会,这意味着采用人工智能可以获得十分丰厚的利润。
5. 聊天机器人应用越来越广泛
大数据和人工智能在全球范围内得到日益广泛的应用,在所有的创新中,很少有像聊天机器人这样的应用让消费者赞叹。 Facebook,Skype和Slack等公司都在其服务中添加了聊天机器人,他们对消费者来说非常有趣,包括法律帮助热线,技术创新让聊天机器人越来越智能。这意味着它们可以为人们解析法规,通过有效的诊断来指导患者。
如果大数据继续以目前的高速度增长,那么预计在日前使用的社交媒体平台上将会有应用更广泛的聊天机器人。这可能比人们想像得还要快,这些由人工智能技术驱动的机器人可能会更加有效地与人们聊天,人们甚至可能无法判断是否正在与另一个人交谈。
大数据和人工智能经常受到新闻界的批评,在许多好莱坞大片中也有一些不合时宜的末日情景。然而事实是,人工智能和驱动其发展的大数据革命正在使人们的世界变得更加美好,而那些投资这些新兴技术的企业和个人现在正在为自己的业务发展而努力。 在这个世界上,几乎没有东西是确定的,但是如果有一件事是肯定的,那就是大数据和人工智能将会得到更多的应用和发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11