
2018年将会改变人工智能的5个大数据趋势
随着大数据和人工智能的广泛应用,这些新兴技术的庞大影响力遍及全球经济,如今的投资者和企业家们迫切希望在2018年取得这些创新成果,正在开始确定将要定义这些技术创新的主要趋势。那么,当今的人工智能和大数据热潮背后的推动力究竟是什么呢?渴望投资于这一现象的投资者能做出什么样的准备呢?
事实证明,到目前为止,界定人工智能革命的许多力量仍然在起作用,并将继续定义人工智能在2018年如何影响市场。通过了解和熟悉这五大新兴趋势,企业和业界人士将在新的一年即将到来之际,充分利用和发挥大数据和基于人工智能的解决方案的作用。
1. 更多关注零售
在最近的大数据和人工智能的应用热潮中,几乎没有哪个领域像人工智能这样可以让企业受益。无论是沃尔玛还是当地的母婴店,各地的企业似乎都在利用这些技术来降低管理费用,同时扩大业务范围。例如,客服人员可能会被人工智能助理彻底取代,但更重要的是,零售商可以通过人工智能跟踪他们的库存,而消费者的兴趣很快就会发生革命性的变化。
随着越来越多的零售商将大数据和人工智能应用到他们的商业模式中,预计这个行业现在可以利用人力和机器的力量来获得更多的利润。此外,由于更多的企业加入并将其应用于自己的业务中,人工智能可能会继续得到更多的投资。
2. 暗数据的新纪元
随着大数据的增长,利用暗数据获得商业成功的机会也将随之增加。所谓的暗数据就是企业正常商业活动期间搜集,处理,存储的数据。但这些数据通常无法用于诸如分析,商业关系或者是直接变现获利等目的。对于并不熟悉人工智能和数据管理领域的许多人来说,这种数据不断被证明是有用的。
暗数据可能难以让人理解,但随着越来越多的企业投资人工智能,这些迷惑可能就会消散,并导致人们对正在进行的数据革命的热情更高。
3. 人工智能和云计算的结合
随着越来越多的企业采用人工智能解决方案以应对其业务困境,其中许多公司将寻求加强其IT基础设施,并将业务转向云端。随着大数据应用者的规模越来越大,人工智能越来越成为一种主流,随之而来的数据需求将给企业的本地服务器带来更大的负担,这意味着他们需要在别处满足他们的数据需求。
云计算非常适合帮助满足和管理这些不断增长的需求,因为内部部署的服务器和数据管理对于企业来说变得过于混乱并且成本高昂。
4. 更加智能的市场营销
市场营销是利用大数据的力量革命化的关键领域之一,通过梳理大量的数据,企业能够比以往任何时候都更准确地针对特定的消费者,将广告和交易直接发送到潜在消费者的邮箱或家门口。
随着越来越多的公司试图利用自动算法来分类数据以找到潜在的客户,人工智能领域将受益于行业投资的增加。而实时定位可以为正确使用的公司带来20%以上的销售机会,这意味着采用人工智能可以获得十分丰厚的利润。
5. 聊天机器人应用越来越广泛
大数据和人工智能在全球范围内得到日益广泛的应用,在所有的创新中,很少有像聊天机器人这样的应用让消费者赞叹。 Facebook,Skype和Slack等公司都在其服务中添加了聊天机器人,他们对消费者来说非常有趣,包括法律帮助热线,技术创新让聊天机器人越来越智能。这意味着它们可以为人们解析法规,通过有效的诊断来指导患者。
如果大数据继续以目前的高速度增长,那么预计在日前使用的社交媒体平台上将会有应用更广泛的聊天机器人。这可能比人们想像得还要快,这些由人工智能技术驱动的机器人可能会更加有效地与人们聊天,人们甚至可能无法判断是否正在与另一个人交谈。
大数据和人工智能经常受到新闻界的批评,在许多好莱坞大片中也有一些不合时宜的末日情景。然而事实是,人工智能和驱动其发展的大数据革命正在使人们的世界变得更加美好,而那些投资这些新兴技术的企业和个人现在正在为自己的业务发展而努力。 在这个世界上,几乎没有东西是确定的,但是如果有一件事是肯定的,那就是大数据和人工智能将会得到更多的应用和发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28