京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要怎么用,12名创业者这样说
当下,大多数企业都明白大数据的作用。大数据——这个庞大甚至是有时是压倒性的信息包含了企业日常经营的过程:销售策略,营销邮件的打开率,网站点击量等等,利用好大数据也能让你发现消费者的行为和心理。
拥有大数据和数据分析工具确实是有帮助的,然而这也是一把双刃剑:过于依赖数据,可能会让我们忽视自己强大的直觉(甚至经常是正确的直觉)。这些直觉又无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下意见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
1.大数据只是指导作用,但不能是只依靠大数据
我认为大数据是很有效的,但是我们在做品牌营销决策的时候不能完全以大数据“马首是瞻”。应该有一种有效结合了大数据和“直觉判断”的方法。通过数据指导,我可以为品牌吸引新的用户,但是我不会让数据决定我和读者之间互动的形式。
–Sean Ogle of Location Rebel
2.让自己对数据负责,同时也要切合实际
人类容易犯错,但数据也会误导我们。我把这种现实主义带到了我所有的决策中。它确保我对数据保持负责,同时对它真正告诉我的东西保持合理的怀疑态度。
–Manpreet Singh of TalkLocal
3.数据是ROI的一部分
大数据有他的重要作用,它简化了数十年来的记录和研究。但大数据也不是万无一失的。当我们观测数据的趋势时,需要对影响结果和数据流的其他因素保持关注。在我的报告中,大数据只是投资回报率的一小部分,还有很多工具和方法可以来发现商业趋势。
–Matthew Capala of Search Decoder
4.理解商业数据需求
这取决于你的商业模型,你需要考虑你的数据获取、数据测量的难易性,还是为人为失误留出了空间,你是在调查观点,事实还是数据。在你全面使用大数据之前考虑这些要素,不要盲从大数据。这是你的业务,你才是这方面的专家
–Kevin Conner of Vast Bridges
5.发现模式和趋势
通过大数据工具和方法,我们可以迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。我们就能预计客户需求或欲望,由此改进服务;在问题出现之前,发现并减弱问题的影响,并改进管理决策。
–Luigi Wewege of Vivier Group
6.了解数据的局限
我们竭力让数据引导我们,而不是我们去引导数据。因为估值是一个特殊的领域,数据和直觉有时会无法产生良性互动。我们不断地添加新的数据可视化和解释,标准测试,并在数据出问题的时候可以及时发现。
–Thomas Smale of FE International
7.树立数据的标准
在推行数据优先的措施之后,我们高兴的发现关键指标有了长足的进步。我们也不盲从于大数据,我们使用以往的销售数据进行评估。我们已经发现,知道这个模型的预测极限在哪里是非常重要的。
–Ismael Wrixen of FE International
8.发现大数据背后的细节
要看到大数据背后的细节。并要基于这些细节来做出决定。
–Daisy Jing of Banish
9.定性和定量分析结合
我们将定量数据(度量、调查、服务器日志数据)与定性反馈(调查、访谈、用户研究等)结合在一起。这给我们提供了一个更全面的视角来做出最明智的决定。数据可能会误导决策,因为它们只会讲述部分内容。
–Adelyn Zhou of TOPBOTS
10.专注于获得优质数据
数据质量不一,也有优劣之别。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司比比皆是。重点之一是获得优质、可靠的数据;这样,后续的决策就会水到渠成。
–Ryan Bradley of Koester & Bradley, LLP
11.分析数据找到潜在客户
大数据让我的企业和销售可以了解和预测用户行为,比如人们在哪些场景下网购,购买什么?未来几个月用户可能会转移到哪些场景。这样,销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及掌握向他们推销的最佳时机。
–John Daniel of Innovator John
12.让数据证明你的直觉正确性
直觉告诉我们,登录页的某些设计会有不错的表现。但只有等数据量起来之后,我们才能看到实际的效果,以及这些设计的优缺点。要判断这些猜测是否准确,数据是最有发言权的。在数据的引导下,我们将就内容的取舍作出合适的决策。
–Jason Applebaum of Eager Media
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27