京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python基础学习之常见的内建函数整理
Python针对众多的类型,提供了众多的内建函数来处理,这些内建函数功用在于其往往可对多种类型对象进行类似的操作,即多种类型对象的共有的操作,下面话不多说了,来一看看详细的介绍吧。
map()
map()函数接受两个参数,一个是函数,一个是可迭代对象(Iterable),map将传入的函数依次作用到可迭代对象的每一个元素,并把结果作为迭代器(Iterator)返回。
举例说明,有一个函数f(x)=x^2 ,要把这个函数作用到一个list[1,2,3,4,5,6,7,8,9]上:
运用简单的循环可以实现:
>>> def f(x):
... return x * x
...
L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
L.append(f(n))
print(L)
运用高阶函数map() :
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
结果r是一个迭代器,迭代器是惰性序列,通过list()函数让它把整个序列都计算出来并返回一个list。
如果要把这个list所有数字转为字符串利用map()就简单了:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
小练习:利用map()函数,把用户输入的不规范的英文名字变为首字母大写其他小写的规范名字。输入['adam', 'LISA', 'barT'],输出['Adam', 'Lisa', 'Bart']
def normalize(name):
return name.capitalize()
l1=["adam","LISA","barT"]
l2=list(map(normalize,l1))
print(l2)
reduce()
reduce()函数也是接受两个参数,一个是函数,一个是可迭代对象,reduce将传入的函数作用到可迭代对象的每个元素的结果做累计计算。然后将最终结果返回。
效果就是:reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
举例说明,将序列[1,2,3,4,5]变换成整数12345:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 2, 3, 4, 5])
12345
小练习:编写一个prod()函数,可以接受一个list并利用reduce求积:
from functools import reduce
def pro (x,y):
return x * y
def prod(L):
return reduce(pro,L)
print(prod([1,3,5,7]))
map()和reduce()综合练习:编写str2float函数,把字符串'123.456'转换成浮点型123.456
CHAR_TO_FLOAT = {
'0': 0,'1': 1,'2': 2,'3': 3,'4': 4,'5': 5,'6': 6,'7': 7,'8': 8,'9': 9, '.': -1
}
def str2float(s):
nums = map(lambda ch:CHAR_TO_FLOAT[ch],s)
point = 0
def to_float(f,n):
nonlocal point
if n==-1:
point =1
return f
if point ==0:
return f*10+n
else:
point =point *10
return f + n/point
return reduce(to_float,nums,0)#第三个参数0是初始值,对应to_float中f
filter()
filter()函数用于过滤序列,filter()也接受一个函数和一个序列,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
举例说明,删除list中的偶数:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
小练习:用filter()求素数
计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:
首先,列出从2开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数5,然后用5把序列的5的倍数筛掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不断筛下去,就可以得到所有的素数。
用Python实现这个算法,先构造一个从3开始的期数数列:
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
#这是一个生成器,并且是一个无线序列
定义一个筛选函数:
def _not_divisible(n):
return lambda x: x % n > 0
定义一个生成器不断返回下一个素数:
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
打印100以内素数:
for n in primes():
if n < 100:
print(n)
else:
break
sorted()
python内置的sorted()函数可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
sorted()函数也是一个高阶函数,还可以接受一个key函数来实现自定义排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序.
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。如果想忽略大小写可都转换成小写来比较:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
小练习:假设我们用一组tuple表示学生名字和成绩:L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)] 。用sorted()对上述列表分别按c成绩从高到低排序:
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
def by_score(t):
for i in t:
return t[1]
L2=sorted(L,key= by_score)
print(L2)
运用匿名函数更简洁:
L2=sorted(L,key=lambda t:t[1])
print(L2)
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27