京公网安备 11010802034615号
经营许可证编号:京B2-20210330
综述:大数据分析面临的机遇与挑战
数据分析给现代社会带来了新的机遇与挑战。一方面,与传统研究侧重于揭示事物的共性不同,大数据研究将有助于人们发现事物的个体特性,并针对每一个体的特性给出个体化的解决方案。同时,大数据研究也将使人们能够从大量个体的差异变化中,揭示其中存在的难以察觉的规律。另一方面,大数据的海量样本规模和高维数特征也引入以下显著特性:数据搜集的偏差性、数据产生的异母体性、计算成本、噪音的累积叠加、假关联性、外生性,以及测量误差等等。为了应对这些挑战,需要引入新的计算和统计方法。
首先,从计算的角度来看,大数据提供的数据量巨大,这会给实施统计计算和最后完成统计估算和检验带来问题。比如,对于一个列数上百万的矩阵,一次简单的矩阵求逆操作在计算上都是困难的。该文概括性地介绍了Hadoop分布式文件系统、MapReduce编程模型、云计算、凸优化算法,以及随机投影技术,以解决海量数据的计算问题。其次,从统计分析的角度来看,大数据经常包含被抽样个体的大量特征信息,即样本的个异性和高维性。个异性和高维性给统计分析与计算带来诸多问题,包括异母体、噪音累积、假相关、内生性。以假相关性为例,高维数会增加发现欺骗性关联的风险。比如,在人类基因表达数据分析中,学者可能会认为第八对染色体上的某个重要致癌基因(MYC)和Y染色体性别决定基因(SRY)有很强的相关性。但是,这可能仅仅是因为考虑的基因数目太高,以至于有些高相关性的出现只是偶然事件。
该文也为大数据分析提供了新的展望。以高维数据下的统计推断为例,文中给出了高致信区间内的最稀疏解的一般解,并指出许多传统的理论所基于的外生性假设是不正确的,尤其可能导致错误的统计推断,并得出错误的科学结论。以内生性问题为例,范剑青教授和他的合作者指出,线性回归模型中的外生性假设在高维数下很可能是不正确的:当考虑的回归变量数目很大时,其中的一些回归量(自变量)很有可能和模型的误差项相关。他们发现,当内生性问题存在时,流行的高维回归方法(诸如lasso和SCAD)的估计值不具有相合性,即:随着样本数变大,估计量和母群体参数的差异不会趋近于零。本文介绍了一种新的、基于广义矩与高维回归的方法。这个方法可以克服内生性问题,并给出具有一致性的估计量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04