京公网安备 11010802034615号
经营许可证编号:京B2-20210330
打造大数据与人工智能正循环
我们在经历一场人工智能变革
“人工智能在当下十分火热,语音识别、人脸识别等能力取得了长足的发展的和进步。”百度深度学习实验室杰出科学家徐伟表示。
如今,大数据的发展和处理大数据能力的提升,以及深度学习的发展,都对人工智能发展起到很重要的推动作用。“深度学习和大数据的结合成为人工智能这个浪潮的巨大推动力。”徐伟介绍,数据内部复杂的结构关系和属性,是要通过大量的数据才能够呈现出来的,因此光有大数据是不够的,还需要非常强有力的学习方法——深度学习。所谓的深度学习,就是对大数据进行深层次的挖掘、分析。
据悉,百度耗费巨大资源打造了百度大脑的PADDLE深度学习平台。该平台支持多样数据类型,可以灵活配置深度学习结构,是一个通用、灵活、强大的深度学习平台。
目前,百度已将深度学习运用到了各个领域,包括数据中心管理、检测,同时在百度搜索、百度推广、百度图片、百度贴吧、百度地图等产品上都有应用。
机器的感知能力正在超越人类
“随着大数据、深度学习的发展,机器在某些方面的感知能力已经接近甚至超过人类的水平。”徐伟介绍,对于搜索这样的短文本(中文)语音输入,人类的单字错误率为8%,机器为6%;对于人们十分自信的人脸识别同样如此:在世界最权威的人脸识别评测(LFW)中,人类的错误率为0.8%,百度人脸识别的错误率为0.23%,这是目前世界上最好的结果。
目前,百度已经通过apistore.baidu.com向用户开放了人脸识别和图像文字识别服务。用户可以通过这些技术进行人脸注册、认证。人脸认证不仅可以静态认证,也可以动态认证,通过观察眨眼、摇头这些动作,保证只有活体才能通过认证。文字识别技术的应用范围和准确度都有很大提高,可以检测任意方向文字、识别中英文、识别公式。
百度运用深度学习在感知方面取得了非常大的进步。人与动物最大的区别在于语言理解能力。百度的统一视觉和语言深度学习模型已经能像小孩学习一样自然,能够进行简单的看图说话、问答,理解动态视频。
百度打造的明星产品
“百度花费巨资开发人工智能,最终目的就是想要使人们的生活变得更美好。”徐伟说。
小明(DuLight)是百度帮助盲人打造的“生活助理”,依托百度大脑,可以帮助盲人描述周围环境、识别人民币,对摄像头看到的人脸进行识别,帮助盲人更好地融入社会和理解真实世界。
脸优,一款可以随意变脸的应用。以人脸检测、跟踪、关键点定位为基础,配合图像处理算法实现了换脸、贴脸的功能。可以自动检测出人脸的位置,同时预测出原始脸和目标脸中对应的人脸关键点坐标,把两个不同脸的各个部位对齐。同时,人脸跟踪技术可以实时跟踪脸部的运动和关键点的位置变化,使得贴上去的脸也可以跟着作出相应的变化。这样用户不仅可以变成明星脸,也可以变成动漫人物的脸。
小度机器人,像真人一样面对面和用户对话。利用人脸检测和跟踪技术,根据用户的位置移动而转动视线。不仅如此,小度机器人还具备了认识用户的能力,可以判断出面前用户的身份是注册用户中的哪一个人,根据用户的不同年龄、身份、性别作出个性化的回答和服务。
数据与人工智能相辅相成
人工智能运用到生活的方方面面,带来巨大的数据量,而更多的数据带来更强的智能,随即产生更好的产品,这就是百度打造的人工智能正循环。通过长此以往的正循环,百度大脑越来越强,机器人会越变越聪明。
“人工智能于1955年提出。一晃半个世纪过去了,我们对人工智能的研究还只停留在开始阶段……”徐伟感叹人工智能的发展道路并不平坦。
徐伟介绍,人工智能还缺少小数据的学习能力、自主地探索环境、通过和人的交流学习的能力。小孩能够主动对周围的事物产生好奇,并且能感知周围的事物,小孩子可能只需要大人教一次就能学会,但是机器却需要成千上万的图像训练才能认识一个新的物体。
“人工智能还有很长一段路要走。虽然很有难度,但是通过大家共同的努力,我看到了人工智能的希望,我们已经在经历一场人工智能的变革。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20