京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈python中的实例方法、类方法和静态方法
在学习python代码时,看到有的类的方法中第一参数是cls,有的是self,经过了解得知,python并没有对类中方法的第一个参数名字做限制,可以是self,也可以是cls,不过根据人们的惯用用法,self一般是在实例方法中使用,而cls则一般在类方法中使用,在静态方法中则不需要使用一个默认参数。在下面的代码中,InstanceMethod类的方法中,第一个参数是默认的self,在这里可以把self换成任何名字来表示,不会有任何影响。在类调用的时候,需要满足参数的个数要求(参数中含有*args是例外),例如13行中,类调用没有参数的时候,会提示错误。同样,实例方法的参数个数也应该满足要求,例如16行中也会报错。实例方法的一个主要特点就是需要绑定到一个对象上,python解析器会自动把实例自身传递给方法,如14行所示,而直接使用InstanceMethod.f1()调用方法是不行的。
class InstanceMethod(object):
def __init__(self, a):
self.a = a
def f1(self):
print 'This is {0}.'.format(self)
def f2(self, a):
print 'Value:{0}'.format(a)
if __name__ == '__main__':
# im = InstanceMethod()
im = InstanceMethod('233')
im.f1()
# im.f2()
im.f2(233)
静态方法和类方法都需要使用修饰器,分别使用的是staticmethod和classmethod。静态方法是和类没有关系的,我觉得就是包装在类中的一般方法,如下例子中,调用静态方法使用实例和不使用实例都是可以的。类方法中,默认的第一个参数使用的是cls,类方法也可以不需要实例而直接使用类调用。对于这三种不同的方法,使用方法如下例所示。那么问题来了,既然有了实例方法,类方法和静态方法与之相比又有什么好处呢?
在类方法中,不管是使用实例还是类调用方法,都会把类作为第一个参数传递进来,这个参数就是类本身。如果继承了这个使用类方法的类,该类的所有子类都会拥有了这个方法,并且这个方法会自动指向子类本身,这个特性在工厂函数中是非常有用的。静态方法是和类与实例都没有关系的,完全可以使用一般方法代替,但是使用静态方法可以更好的组织代码,防止代码变大后变得比较混乱。类方法是可以替代静态方法的。静态方法不能在继承中修改。
class test(object):
def instance_method(self):
print 'This is {0}'.format(self)
@staticmethod
def static_method():
print 'This is static method.'
@classmethod
def class_method(cls):
print 'This is {0}'.format(cls)
if __name__ == '__main__':
a = test()
a.instance_method()
a.static_method()
a.class_method()
print '----------------------------------------'
# test.instance_method()
test.static_method()
test.class_method()
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12