
SPSS回归分析:曲线估计
一、概念(分析-回归-曲线估计)
曲线估计过程为11种不同的曲线估计回归模型生成曲线估计回归统计量和相关的图。将对每个因变量生成一个单独的模型。也可以将预测值、残差和预测区间保存为新变量。
二、模型(分析-回归-曲线估计)
您可以选择一个或多个曲线估计回归模型。要确定使用哪种模型,请绘制数据。如果变量显示为线性相关,则使用简单线性回归模型。当变量不是线性相关时,请尝试转换数据。当转换没有帮助时,则可能需要更复杂的模型。查看数据的散点图;如果该图看起来像是您了解的某个数学函数,则将数据与该类型的模型进行拟合。例如,如果数据看起来像指数函数,请使用指数模型。
1、线性.方程为Y = b0 + (b1 * t)的模型。按时间的线性函数建模的序列值。
2、对数.方程为Y = b0 + (b1 * ln(t))的模型。
3、逆模型.方程为Y = b0 + (b1 / t)的模型。
4、二次.方程为Y = b0 + (b1 * t) + (b2 * t**2)的模型。二次模型可用来对“减弱”的序列或阻尼衰减的序列进行建模。
5、三次.由方程Y = b0 + (b1 * t) + (b2 * t**2) + (b3 * t**3)定义的模型。
6、幂.方程式为Y = b0 * (t**b1)或ln(Y) = ln(b0) + (b1 * ln(t))的模型。
7、复合.方程为Y = b0 * (b1**t)或ln(Y) = ln(b0) + (ln(b1) * t)的模型。
8、S.方程式为Y = e**(b0 + (b1/t)) or ln(Y) = b0 + (b1/t)的模型。
9、逻辑.方程为Y = 1 / (1/u + (b0 * (b1**t)))或ln(1/y-1/u)= ln (b0) + (ln(b1) * t)的模型,其中u是上界值。选择“逻辑”之后,请指定用在回归方程中使用的上界值。该值必须是一个大于最大因变量值的正数。
10、增长.方程式为Y = e**(b0 + (b1 * t))或ln(Y) = b0 + (b1 * t)的模型。
11、指数.方程为Y = b0 * (e**(b1 * t)) or ln(Y) = ln(b0) + (b1 * t)的模型。
三、保存(分析-回归-保存)
1、保存变量。对于每个选定的模型,您可以保存预测值、残差(因变量的观察值减去模型预测值)和预测区间(上限和下限)。新变量名称和描述标签显示在输出窗口中的表中。
2、预测个案。在活动数据集中,如果选择时间而不是变量作为自变量,则可以指定超出时间序列结尾的预测期。您可以选择以下选项之一:◎从估计期到最后一个个案的预测。在估计期内的个案的基础上预测文件中所有个案的值。显示在对话框底端的估计期可通过“数据”菜单上的“选择个案”选项的“范围”子对话框来定义。如果未定义任何估计期,则使用所有个案来预测值。◎预测范围。根据估计期中的个案,预测指定日期、时间或观察号范围内的值。此功能可以用于预测超出时间序列中最后一个个案的值。当前定义的日期变量确定可用于指定预测期结尾的文本框。如果没有已定义的日期变量,则您可以指定结尾的观察(个案)号。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13