
SPSS回归分析:曲线估计
一、概念(分析-回归-曲线估计)
曲线估计过程为11种不同的曲线估计回归模型生成曲线估计回归统计量和相关的图。将对每个因变量生成一个单独的模型。也可以将预测值、残差和预测区间保存为新变量。
二、模型(分析-回归-曲线估计)
您可以选择一个或多个曲线估计回归模型。要确定使用哪种模型,请绘制数据。如果变量显示为线性相关,则使用简单线性回归模型。当变量不是线性相关时,请尝试转换数据。当转换没有帮助时,则可能需要更复杂的模型。查看数据的散点图;如果该图看起来像是您了解的某个数学函数,则将数据与该类型的模型进行拟合。例如,如果数据看起来像指数函数,请使用指数模型。
1、线性.方程为Y = b0 + (b1 * t)的模型。按时间的线性函数建模的序列值。
2、对数.方程为Y = b0 + (b1 * ln(t))的模型。
3、逆模型.方程为Y = b0 + (b1 / t)的模型。
4、二次.方程为Y = b0 + (b1 * t) + (b2 * t**2)的模型。二次模型可用来对“减弱”的序列或阻尼衰减的序列进行建模。
5、三次.由方程Y = b0 + (b1 * t) + (b2 * t**2) + (b3 * t**3)定义的模型。
6、幂.方程式为Y = b0 * (t**b1)或ln(Y) = ln(b0) + (b1 * ln(t))的模型。
7、复合.方程为Y = b0 * (b1**t)或ln(Y) = ln(b0) + (ln(b1) * t)的模型。
8、S.方程式为Y = e**(b0 + (b1/t)) or ln(Y) = b0 + (b1/t)的模型。
9、逻辑.方程为Y = 1 / (1/u + (b0 * (b1**t)))或ln(1/y-1/u)= ln (b0) + (ln(b1) * t)的模型,其中u是上界值。选择“逻辑”之后,请指定用在回归方程中使用的上界值。该值必须是一个大于最大因变量值的正数。
10、增长.方程式为Y = e**(b0 + (b1 * t))或ln(Y) = b0 + (b1 * t)的模型。
11、指数.方程为Y = b0 * (e**(b1 * t)) or ln(Y) = ln(b0) + (b1 * t)的模型。
三、保存(分析-回归-保存)
1、保存变量。对于每个选定的模型,您可以保存预测值、残差(因变量的观察值减去模型预测值)和预测区间(上限和下限)。新变量名称和描述标签显示在输出窗口中的表中。
2、预测个案。在活动数据集中,如果选择时间而不是变量作为自变量,则可以指定超出时间序列结尾的预测期。您可以选择以下选项之一:◎从估计期到最后一个个案的预测。在估计期内的个案的基础上预测文件中所有个案的值。显示在对话框底端的估计期可通过“数据”菜单上的“选择个案”选项的“范围”子对话框来定义。如果未定义任何估计期,则使用所有个案来预测值。◎预测范围。根据估计期中的个案,预测指定日期、时间或观察号范围内的值。此功能可以用于预测超出时间序列中最后一个个案的值。当前定义的日期变量确定可用于指定预测期结尾的文本框。如果没有已定义的日期变量,则您可以指定结尾的观察(个案)号。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28