
物联网深入发展 将如何改变大数据分析
数据一直在业务中发挥关键作用,但大数据分析的兴起,大量存储的信息可以在计算上挖掘出来,揭示有价值的见解、模式和趋势,使其在现代商业领域几乎不可或缺。收集和分析这些数据并将其转化为可行的结果的能力是成功的关键。
随着物联网的发展,这一过程变得越来越复杂,在日常生活中,从车辆到商店展示,到智能家居自动化技术,如恒温器和水位显示器,都能产生大量的数据。物联网带来了各种新的分析挑战,而更快适应这一新现实的企业将获得明显的优势。
改变基础设施的需求
物联网产生的数据面临的主要问题之一就是它的规模。英特尔公司估计,到2020年,多达2000亿台智能设备将在线运行,以及约54亿个具有物联网功能的B2B设备。这意味着任何寻求利用物联网数据的企业必须首先投资于处理数据量惊人所需的基础架构,其中大部分将是原始的和未标准化的。数据湖和分布式服务器集群可能成为存储此数据所必需的,控制数据流对于管理带宽和网络成本是必不可少的。
新的分析挑战
除了物联网产生的大量数据之外,数据本身也提出了一个问题。大多数传感器产生的数据是相对嘈杂和非标准化的,大部分数据是实时数据流的形式。这些事实需要一种新的分析方法,软件堆栈能够快速分类,处理和分析大量的数据。在数据被正确处理之后,下一个挑战是挖掘这些不同的信息源以产生可操作的数据。
技能分析师日益增长的需求
随着更复杂分析的需要,需要更多和更熟练的数据分析师。从物联网数据流中吸取有用的见解需要高超的技能,不仅要管理数据本身,还要确定最有效的焦点区域。大数据框架(如hadoop和Spark)以及R数据编程语言的专长正在迅速成为管理物联网生成数据的关键,业务分析越来越依赖于复杂的技能集,其中包括机器学习,复杂算法,深度学习,复杂事件处理等。
从数量提取质量
调查显示,96%的企业遇到通过其接收的数据量进行过滤的问题,而这个问题只会因为大量新数据的涌入而加剧。大数据本身没有什么用途。其它真正的价值在于从这个数量中提取质量并产生有意义的见解。消除噪音的一个重要方法是使用过滤器来消除多余的数据。物联网数据通常是高度粒度的,大多数企业不需要这样的详细信息。使用算法驱动的过滤器将这些数据压缩成更实际的时间间隔中,显着地减少了要分析的数据量,而不会影响其质量,从而使其更有价值。此外,由于物联网传感器已经广泛存在,而且很快就会普及,将有用的数据源从那些不需要的地方进行排序将是最重要的。
新的安全范式
由于物联网由广泛的设备,通信协议和数据类型组成,为了保护其产生的数据,这要求企业必须准备迎接新挑战。许多数据安全专业人员在处理物联网数据方面根本没有太多经验,而且新的来源和技术却快速到来,随着安全威胁的增加,需要企业提高警觉性和灵活性。妥善保护物联网数据将需要所有新的安全措施和协议专门设计来满足这一新的现实。
物联网已经经历了快速增长,似乎有望成为业务分析未来的浪潮,但它仍然是一个新兴的技术。它产生的大量数据将只会增长,并变得更加复杂,现在投资于基础设施和需要处理的技术人员将在未来得到回报。负担得起的,可扩展的,持久的存储将是至关重要的,数据分析师也将具备适应大数据快速变化现实的技能和经验。未来即将到来,必须进行适当的规划和准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04