
python中执行shell的两种方法总结
这篇文章主要介绍了python中执行shell的两种方法,有两种方法可以在Python中执行SHELL程序,方法一是使用Python的commands包,方法二则是使用subprocess包,这两个包均是Python现有的内置模块。
一、使用python内置commands模块执行shell
commands对Python的os.popen()进行了封装,使用SHELL命令字符串作为其参数,返回命令的结果数据以及命令执行的状态;
该命令目前已经废弃,被subprocess所替代;
# coding=utf-8
'''
Created on 2013年11月22日
@author: crazyant.net
'''
import commands
import pprint
def cmd_exe(cmd_String):
print "will exe cmd,cmd:"+cmd_String
return commands.getstatusoutput(cmd_String)
if __name__=="__main__":
pprint.pprint(cmd_exe("ls -la"))
二、使用python最新的subprocess模块执行shell
Python目前已经废弃了os.system,os.spawn*,os.popen*,popen2.*,commands.*来执行其他语言的命令,subprocesss是被推荐的方法;
subprocess允许你能创建很多子进程,创建的时候能指定子进程和子进程的输入、输出、错误输出管道,执行后能获取输出结果和执行状态。
# coding=utf-8
'''
Created on 2013年11月22日
@author: crazyant.net
'''
import shlex
import datetime
import subprocess
import time
def execute_command(cmdstring, cwd=None, timeout=None, shell=False):
"""执行一个SHELL命令
封装了subprocess的Popen方法, 支持超时判断,支持读取stdout和stderr
参数:
cwd: 运行命令时更改路径,如果被设定,子进程会直接先更改当前路径到cwd
timeout: 超时时间,秒,支持小数,精度0.1秒
shell: 是否通过shell运行
Returns: return_code
Raises: Exception: 执行超时
"""
if shell:
cmdstring_list = cmdstring
else:
cmdstring_list = shlex.split(cmdstring)
if timeout:
end_time = datetime.datetime.now() + datetime.timedelta(seconds=timeout)
#没有指定标准输出和错误输出的管道,因此会打印到屏幕上;
sub = subprocess.Popen(cmdstring_list, cwd=cwd, stdin=subprocess.PIPE,shell=shell,bufsize=4096)
#subprocess.poll()方法:检查子进程是否结束了,如果结束了,设定并返回码,放在subprocess.returncode变量中
while sub.poll() is None:
time.sleep(0.1)
if timeout:
if end_time <= datetime.datetime.now():
raise Exception("Timeout:%s"%cmdstring)
return str(sub.returncode)
if __name__=="__main__":
print execute_command("ls")
也可以在Popen中指定stdin和stdout为一个变量,这样就能直接接收该输出变量值。
总结
在python中执行SHELL有时候也是很必须的,比如使用Python的线程机制启动不同的shell进程,目前subprocess是Python官方推荐的方法,其支持的功能也是最多的,推荐大家使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10