京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中执行shell的两种方法总结
这篇文章主要介绍了python中执行shell的两种方法,有两种方法可以在Python中执行SHELL程序,方法一是使用Python的commands包,方法二则是使用subprocess包,这两个包均是Python现有的内置模块。
一、使用python内置commands模块执行shell
commands对Python的os.popen()进行了封装,使用SHELL命令字符串作为其参数,返回命令的结果数据以及命令执行的状态;
该命令目前已经废弃,被subprocess所替代;
# coding=utf-8
'''
Created on 2013年11月22日
@author: crazyant.net
'''
import commands
import pprint
def cmd_exe(cmd_String):
print "will exe cmd,cmd:"+cmd_String
return commands.getstatusoutput(cmd_String)
if __name__=="__main__":
pprint.pprint(cmd_exe("ls -la"))
二、使用python最新的subprocess模块执行shell
Python目前已经废弃了os.system,os.spawn*,os.popen*,popen2.*,commands.*来执行其他语言的命令,subprocesss是被推荐的方法;
subprocess允许你能创建很多子进程,创建的时候能指定子进程和子进程的输入、输出、错误输出管道,执行后能获取输出结果和执行状态。
# coding=utf-8
'''
Created on 2013年11月22日
@author: crazyant.net
'''
import shlex
import datetime
import subprocess
import time
def execute_command(cmdstring, cwd=None, timeout=None, shell=False):
"""执行一个SHELL命令
封装了subprocess的Popen方法, 支持超时判断,支持读取stdout和stderr
参数:
cwd: 运行命令时更改路径,如果被设定,子进程会直接先更改当前路径到cwd
timeout: 超时时间,秒,支持小数,精度0.1秒
shell: 是否通过shell运行
Returns: return_code
Raises: Exception: 执行超时
"""
if shell:
cmdstring_list = cmdstring
else:
cmdstring_list = shlex.split(cmdstring)
if timeout:
end_time = datetime.datetime.now() + datetime.timedelta(seconds=timeout)
#没有指定标准输出和错误输出的管道,因此会打印到屏幕上;
sub = subprocess.Popen(cmdstring_list, cwd=cwd, stdin=subprocess.PIPE,shell=shell,bufsize=4096)
#subprocess.poll()方法:检查子进程是否结束了,如果结束了,设定并返回码,放在subprocess.returncode变量中
while sub.poll() is None:
time.sleep(0.1)
if timeout:
if end_time <= datetime.datetime.now():
raise Exception("Timeout:%s"%cmdstring)
return str(sub.returncode)
if __name__=="__main__":
print execute_command("ls")
也可以在Popen中指定stdin和stdout为一个变量,这样就能直接接收该输出变量值。
总结
在python中执行SHELL有时候也是很必须的,比如使用Python的线程机制启动不同的shell进程,目前subprocess是Python官方推荐的方法,其支持的功能也是最多的,推荐大家使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27