
互联网时代 实体商业该如何应用大数据
实体商业在中国的发展是“0到1”的过程,即从匮乏到丰富, 全、大是其优势。但是,区别于海外商业地产的发展,国内实体商业在羽翼尚未丰满的过程中,就已直面互联网的挑战。在此背景下,实体商业的转型应关注三个关键词:
第一,迭代:“泛90后”成为消费人流主体之后,其消费理念的巨变对于商业的影响需要重点关注。
第二,去交易化:在“互联网+”时代,各类渠道都在争抢实体商业的客流,实体商业渠道的意义在减弱。
第三,强主题:主题要求的背后是人群对于实体商业情感以及价值观认同的需求。
2014年年底,全球移动通信系统协会提供的数据显示,世界上移动设备的数量首次超过人口总数。这是否意味着实体商业没有发展空间了?实际上,互联网技术改变了原有生态系统的进化周期,同时,也会推动传统行业进行变革,它们之间并非替代的关系。网店冲击实体商业,攻占了便利交易的渠道;移动终端的开发,降低了衣食住行的外向机会,但它们各有所长,互有补充。如何互补,就需要掌握两者的特性,做好大数据的应用。
对于商业地产的大数据应用,我们需要注意,大数据不等于有效数据。比如,大家都有类似的经验,即某一个文件自己确信存储过,但是需要的时候却无论如何也找不到。也就是说,目前各类PC端、移动端可带来海量数据,但是,数据众多且分散在各种载体、渠道中,分布稀疏分散,呈现海量的碎片化形态,没有按需收集,且也没有按照模型整理,并不是有效的数据。那么,如何得到有效的数据呢?
我们认为,中国的实体商业发展历史与国外是不同的,原有的发展多是“下游思维”,也就是无限向往地向海外学习经验。但是在当下,国内快速迭代的项目已经提供了丰富的比照和前沿的探索,让大家可以从“上游思维”切入。相比产品、技术等层面,从“人”的层面分析更有效,这就需要分析消费者属性、行为轨迹、特定人群分布、消费偏好以及发展趋势。
目前,研究产业互联网有两种思维模式,将互联网技术作为核心则为“互联网+”,而将产业作为价值核心延伸则是“N+互联网”。对于商业而言,实体商业拥抱互联网技术的核心优势是基于场所、产品、服务的运营管理。
无论实体商业还是虚拟商业,目标只有一个,就是争抢消费者的时间,为此需要做的事情均为提升平台效率。辨明线上线下的相似与不同,需要从互补、极尽各长的角度,提升导流、汇聚、交易、维护的价值,创造闭环方式进行运作,方能有效提升实体商业的平台效率及价值。
这就需要我们把数据变成“有效数据”,有目的性采集再去应用,而人在生活场景中产生的数据才是真实数据。大家可以想一下,在百度里输入任何一个词的时候,你的记录就会被留下,会被标签化,在当当买什么书都会有标签。交叉分析后再筛选推荐,所以你买过这本书后,他们还会推荐其他类似的书。
但是互联网数据解决不了“去标签”,这很关键。购物中心应该满足社交人群的商务社交,还是生活状态的亲子社交,需要考虑。但我们不用透过大数据,而是透过人口的采集,通过标准化工具就可以完成。比如,北京的华润五彩城,有18万平方米的体量,定位为情感商业。原因在何?因为北京北五环、中关村东面每天都有6万到7万的人流量,这些人不看重自己标签,他们更看重孩子的培养教育。
在这种情况下,大数据能帮我们做三到五公里的客观人流量,人流到访频次,行为轨迹的习惯,消费者在电商平台的购物偏好等。我们通过加标签和去标签的过程,用大数据让商业回归本质,让消费者为交易和服务付费。
强调一点,做实体商业不要总想着一步到位,很多购物中心一上来就是开发APP,却没有想到在没有会员量的时候,要花费多大的成本去吸引会员。其实现在不缺技术,但是实体商业自身没有意识到去积累会员资源,也没有把会员服务好。运营会员数据的能力是稀缺的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10