京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS对数线性模型:模型选择
1、概念“模型选择对数线性分析”过程分析多阶交叉制表(列联表)。它使用成比例拟合的迭代算法将分层对数线性模型拟合到多维交叉制表。此过程可帮助您找出关联的分类变量。要构建模型,可以使用强制输入和向后去除方法。对于饱和模型,可以请求参数估计值和偏关联检验。饱和模型会为所有单元加上0.5。
2、示例。在研究两种洗涤剂中的一种的用户偏好时,研究人员统计了每组的人数、水的软硬度(软、中等或硬)的各种类别、其中一个品牌的上一次使用以及洗涤温度(冷或热)。他们发现了温度与水的软硬度以及品牌偏好的关系。
3、统计量。频率、残差、参数估计值、标准误、置信区间和偏关联检验。对于定制模型,则为残差图和正态概率图。
4、数据。因子变量是分类的。要分析的所有变量都必须是数值。开始进行模型选择分析前,可以将分类字符串变量重新编码为数值变量。避免指定具有多个水平的多个变量。这样的指定可能导致多个单元具有少量的观察值,卡方值可能没用。
5、相关过程。“模型选择”过程可帮助标识模型中需要的项。然后您就可以使用“一般对数线性分析”或“Logit对数线性分析”继续评估模型。可以使用“自动重新编码”重新编码字符串变量。如果数值变量具有空类别,则使用“重新编码”创建连续的整数值。
二、选项(分析-对数线性模型-模型选择-选项)
1、显示。您可以选择频率和/或残差。在饱和模型中,观察的和期望的频率相同,残差为0。
2、图。对于定制模型,可以选择两种类型的图中的一种或两种:残差和正态概率。这些可帮助确定模型与数据的拟合度。
3、显示饱和模型。对于饱和模型,可以选择参数估计值。参数估计值可帮助确定可从模型中删除哪一项。此外还有一个可用的关联表,其中列出了偏关联检验。对于具有多个因子的表,选择这个选项需要进行大量的计算。
4、模型标准。使用成比例拟合的迭代算法获取参数估计值。通过指定最大迭代次数、收敛或Delta(为饱和模型的所有单元频率添加的值)可覆盖一个或多个估计标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12