
当你学会抄菜的时候,你就学会了大数据
最近在学习数仓跟BI,突然发现,结合自己所学会抄的菜。试着把学过的大数据重新理解一番,希望各位都能来一起讨论,共同进步。
走进厨房
走进厨房后,相信大家会看到各种锅碗瓢盆,案板,切菜刀,调料,橱柜,水池...........而这些就相当于是大数据的架构。
其中橱柜,相当于是Hadoop。橱柜可以储存各种食材,而Hadoop可以存储各种不同类的数据(结构化与非结构化)。而橱柜可以存放不同食材,比如不规整的豆腐块,大冬瓜,土豆....还有一些规整的食材,比如大米,小米,绿豆........规整的食材与不规整的食材的区别,各家有各家不同的规定,而一般的规定就是规格的食材要用袋子把它们装起来。这里就相当于是大数据里的数据整理流程。而这些半规整的食材要放到一个个小袋子里,比如说,淀粉,姜粉,蒜泥.....用袋子或者盒子把它们装好,放在相应橱柜的地方,就相当于我们大数据里说的ETL(抽取,封装,加载),以备后用。
而不同厂家的橱柜又会有不同的格子划分及存储区,比如:欧派,宜家的橱柜就会划分出很多小的分区来装不同的东西。而这一块就相当于HBase,灶台下边有专门用于凉碗的,还有抽油烟机旁边专门用于放刀具的区域,还有专门用于放各种锅的区域。而当HBase划分的好的时候,就对上层的MapReduce有很大的帮助,因为你各个区域规划的越好,当你开始抄菜的时候,取用各种餐具的时候就会更加的得心用手。
至于上边的Mahout,Pig,Hive就相当于你如何在橱柜中找到你相应的食材的过程,比如说,你要抄西红柿鸡蛋,你要找鸡蛋跟西红柿...........再往上走就是一个对厨房的整体管理了。你做过的哪些菜,或者你想按照某个食谱来做菜,你就要有一个本子写上你每次做菜的步骤,这个就相当于是FlumeL,而Sqoop就相当于萝卜擦,你想吃萝卜丝,你就要用工具把萝卜切成丝才可以,这里,用刀具可以,用萝卜擦会更高效。
再来说说Zookeeper吧!它就相当于把你经常用的几项工具放到离你做菜最近的一个橱柜中。方便管理这些工具。
好了,说完了Hadoop,再来说一说Spark.它跟橱柜的唯一不同就是:橱柜是给你全部安装固定好了的,而Spark这种橱柜是可以移动的橱柜,同时对于你经常用的工具,可以进行优先排序。让你更快的对食材进行加工。刚开始,你做完一道菜,要半个小时多,而当你熟练之后,加之Spark移动橱柜+优先推送食材(内存计算+可迭代算法),你可以在5分钟内就做完这道菜。
加工食材
实际上,我们食材的储存过程就相当于是一个数仓的建立过程,而在一个数仓的建立过程中。最重要的莫过于区分不同维度。比如在大数据里的Key+Value,Big list,实际上都是提供一种基于可扩展的列值存储。而在数据可视化中,数据多维分维里,也是强调数据的不同维度的区分。这里我们就以食材的区分为例来说明。
首先,厨房里的食材维度可以大致分析:蔬菜维度,禽肉维度,米面维度............不同的维度决定了你对食物的理解程度,比如:你可以把糯米放在米面维度,也可以放在糕点维度。所以数据的不同维度也取决于你对食材的功能及使用场景。再比如:把你香茹切的很小,晒干,然后碾成粉,要这些香茹粉就会从蔬菜维度进入到调料维度。
当我们明白了食材维度的这个概念之后,我们就要开始我们的加工了。是先抄,还是先炸,还是先热水汤一下,都是对食材的一种加工。这里就相当于对初始数据进行相应的整形。由于要用到不同的厨具,就涉及到前边讲的走进厨房的细节的。在大数据里,可以用不同的组件对原始数据进行处理。而在厨房,可以用不同的厨具对食材进行处理。比如:蒸馒头,可以用抄锅来蒸,同时可以用钢精锅来蒸。虽然都能达到能吃的地步。但是所用的时间及口感不同。这些也就相当于大数据里各种不同组件之间的动行效果。
最后,先感谢下我现在的公司,每个月不定期给我们发菜,同时也感谢下老婆,教会了我抄各种菜。最后,附一张我抄好的菜吧(先给它起一个响亮的名字:乱棍打死猪八戒!undefined )!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02