京公网安备 11010802034615号
经营许可证编号:京B2-20210330
方差分析:不同组间的差异真的显著吗
在数据分析中,按照具体维度将数据分组进行组间比较是十分常见的,例如在零售业态中,按照性别、城市、收入水平将消费者进行分组进行对比分析。看似简单,其实这其中经常伴随着拍脑袋决策的危险。以下数据案例可以说明。
数据案例说明:
上表反映不同收入的用户对A卖场品类方面的满意度。我们是否能够从表面上看,根据8.29>7.46>7.23,就断定低收入者对A卖场的品类最满意,而高收入者最不满意呢?拍脑袋来看,这似乎十分合理。
不同组间对比,差异是否显著,需要谨慎!
满意度的得分差异来自两个方面,即不同分组间可能的差异和同一组内误差导致的可能差异。本案例中,不同组间差异是由于收入不同,所引起的用户满意度差异。同一组内是同样的收入水平,可能由于其他抽样误差引起了用户满意度的差异。
而只有当满意度差异来自收入水平(组间差异)的影响时,而不是其他因素,才可说收入影响品类满意度,不同收入水平的用户满意度不同。
用方差分析来判断组间差异
常用的显著性检验有T检验和方差分析,T检验只适于两组样本,而方差分析则适于多组样本,本例可采用方差分析来判断。
1、首先我们对上表数据进行细化,找到每组内受访者的具体满意度打分数值,而不是这个汇总后的得分值。
2、SPSS方差分析:
分析:比较均值,单因素方差分析
因变量列表:品类满意度
因子:收入
选项:方差同质性检验
3、数据是否适合做方差分析
方差分析之前,需要进行可行性检验,原假设,各分组方差无差异。根据同质性检验可知,sig值0.453,为大概率,原假设成立,即不同分组之间同质,没有显著差异,可进行方差分析。
4、方差分析结果
原假设,各分组之间无差异。方差分析sig值0.194,大于小概率值0.05,为大概率,原假设成立,即不同收入水平分组之间在品类满意度上并不没有不同。不存在显著差异。
5、用可视化图来揭示原因
我们可以看到,每类收入者的满意度得分都围绕平均值上下波动,这表明不同收入者对品类的态度存在明显差异,例如,同是高收入者,有的非常满意,有的却十分的不满意。同组内的差异甚至高出不同收入者之间的差异,这一点可以通过方差分析中方差得以判断。
因此说,收入水平并不是导致用户对A卖场品类满意度的关键因素。
可见,数据的表象往往迷惑人,尤其是综合汇总后的平均值,通过对底层数据进行分组及方差分析则可以让我们拨开云雾,看到数据的本质。
同时,这个案例也告诉我们,在常规的报表分析当中,经常性的工作是对底层数据进行汇总分析,然后拿汇总数据用于决策,此时,非常容易就数字大小的对比而做出判断,报表工作人员需要注意,需要养成用统计的理念和逻辑上报数据的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27