京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商发展大数据的核心价值在于商业化
近年来,电信运营商利润率增幅放缓甚至下降,传统话音业务收入增长乏力,日趋边缘化、管道化;数据业务占比迅速增长,但量收的剪刀差持续扩大,投入多回报少。
在运营商转型路上,大数据技术的深入应用与商业模式的开发大有可为,可以说是运营商规避同质化竞争,打造智能数据管道,寻找差异化经营“蓝海”的必由之路。大数据的技术架构寻求高性能与低成本的统一,可以降低电信运营商庞大的IT资本开支压力。大数据的商业应用促使电信运营商从单纯提供网络资源、前向收费方式转变为基于网络资源和依据海量数据资源提供服务的灵活多样的混合模式,是一种新的商业模式。
国内运营商大数据应用受限
国内电信运营商在大数据应用方面主要受到了以下方面的限制。
第一,数据采集散乱、深度不足:电信运营商拥有海量数据的来源,但采集渠道散乱,通常分级、分地区、分系统建设,整体规划不足,数据标准化程度低,汇聚困难,无法形成有效的数据资产。
第二,数据分析能力不足:电信运营商建有以数据仓库为核心的经营分析系统,通常采用小型机加高性能存储架构建设,针对传统话单日志等结构化数据设计,还不具备非结构化数据与流数据的分析处理能力。
第三,数据商业应用不足:电信运营商大量数据尚没有充分发掘数据应有的价值,智能管道的建设正处在初期阶段。现有分析系统仅对内部提供服务,缺乏对外数据开放平台,大量数据未能有效进行商业利用。
电信运营商大数据发展探析
(1)大数据的政策支撑
电信运营商应积极寻求政府的支持,推动政府为大数据产业发展提供积极的政策支撑与引导、对关键技术的研发提供专项财政资金支持、对重点工程项目的实施提供支持与保障。电信运营商应高度重视大数据信息安全,推动政府部门牵头启动大数据立法,解决大数据信息权属与隐私保护问题;制定大数据技术标准与运营标准,规范大数据安全体系。通过政策支撑保障大数据产业的可持续发展。
2012年10月,中国计算机学会和中国通信学会均成立了大数据专家委员会,从行业学会的层面来组织和推动大数据的相关产学研用活动。运营商可以依托该平台推动企业内部大数据的发展。
(2)大数据技术架构与算法的研发
根据2012年美国市场调查咨询公司(Gartner)发布的新兴技术曲线,大数据技术正处于“期望膨胀期”,距离真正成熟尚需2~5年。电信运营商应抓住机遇加强技术研发,在开源技术的基础上,发展适合运营商的大数据技术;同时应积极对技术标准做出贡献,掌握技术主动权。在技术的拓展可主要集中在三个方面:(a)大数据的采集与传输技术。采集技术是指基于智能管道和物联网的大数据获取技术和算法;大数据传输技术研究应注重海量数据传输的安全可靠性,解决调度与控制问题。(b)大数据的存储与分析技术。存储技术主要指面向海量数据文件的有效存储与读取能力、大数据的新型表示方法和去冗降噪算法;分析技术的拓展方向应包括数据可用性和可计算性,计算复杂性问题,研究求解算法,进行高效处理等。(c)大数据的隐私安全技术。在大数据时代,如何保护用户隐私安全不仅是法规层面需要解决的问题,也是电信运营商在技术层面亟待解决的问题。
(3)大数据支撑运营中心
运营商要充分发挥大数据的价值,首要条件是具备采集、融合、存储、分析海量数据的能力。电信运营商可以在现有经分系统或数据仓库的基础上,针对目前数据采集散乱、采集深度不足、分析能力不足的问题,构建数据集中、平台统一的省级或全国级大数据支撑运营中心,为大数据的应用与商业化提供精确支撑。大数据支撑运营中心可以设置如下逻辑架构。
数据采集层:通过建设数据采集聚合网关,汇聚跨地区、跨系统的采集的丰富数据源。
数据融合层:建设海量结构化数据、非结构化数据以及流数据处理能力,建立数据标准化体系,进行统一处理和存储。
数据应用层:通过构建不同的数据挖掘与分析模型,融合结构化数据,形成数据仓库,对外提供统一服务能力。
资源管理层:提供统一监控、资源管理与运营等功能。
(4)大数据应用与商业化
大数据应用与商业化是大数据发展的核心价值与落脚点。电信运营商拥有极其丰富的数据资源,相比互联网公司更具天然优势。对大数据进行全面、深入、实时的分析和应用,以客户体验为核心发展流量经营,是电信运营商应对新形势下挑战避免沦为哑管道的关键。
通过大数据助力业务创新,提供市场营销与客户服务的精准支撑能力。在互联网社会中,拥有数据,就拥有了了解用户行为的基础,从足够多数据的叠加中可以探知一个人的过往行为,同时可以精准的预测出其未来的需求。通过对海量的行为和内容数据处理,可以获得用户的时间、位置、业务、终端等基础信息,分析出用户的身份、兴趣、社交圈等,这样可以开发出很多新的增值业务。
通过大数据提升企业管理水平,提供透明管控与科学运营的精准支撑能力。运营商可以融合市场、财务、网络等多个系统产生的海量数据,将相关联的数据进行处理分析,有利于运营商更全面、更准确、更快速地获得企业运营数据,为投资决策和网络优化方案提供更多视角。
通过大数据发展开放合作平台,开辟新的商业模式,助力电信运营商转型。电信运营商可以通过大数据支撑运营中心发展开放合作平台,为广大开发者提供海量数据资源,发挥大数据的价值,将数据作为资源,进而提升的运营商利润增长点。
大数据技术的发展及规模商用,使得电信运营商能够充分挖掘管道内容,创造新的业务增长模式,应对“去电信化”的趋势,转型为综合信息服务提供商,成为未来大数据时代中最大的赢家。但在推动商业化应用的过程中还应全面认识大数据的内涵,避免陷入单纯的计算能力和存储能力建设,要清醒认识大数据发展的成熟度,客观分析用户的应用需求,避免过度建设
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12