
一次数据分析的全过程
刚下完班的时候,在公司无聊的坐着,一位同事拿了一些数据给我,说让我实现一个类似交叉表格的统计报表。
我原以为是最多十几分钟就搞定的事情,没想到花了2个小时,所以印象比较深,就把全过程记录了下来
源数据就是个日志文本信息
要的结果是统计一下,各时段对应的超时毫秒的数量
理论上也不复杂,能找出数据规律,进行分组统计而已,但问题在于:
首先统计是上下文相关的,即通过上下文的数据相计算才能获取到相应的指标
其次如何判断上下文的场景,根据几组字段判断都有问题,即得不到唯一的标示
原来想着应该是轻而易举的事情,先把数据导入oracle吧
有日期有时间,需要把文本的日期时间处理成oracle的date类型,可偏偏date类型不支持毫秒运算,第一个问题出来了,依赖于日志中已有的毫秒进行上下文计算又有一定的问题。
先统计了再说吧
select b.hours,
case when overlap<10 then '<10ms'
when overlap<20 then '10-20'
when overlap<30 then '20-30'
when overlap<40 then '30-40'
when overlap<50 then '40-50'
when overlap<60 then '50-60'
when overlap<70 then '60-70'
when overlap<80 then '70-80'
when overlap<90 then '80-90'
else '>90ms'
end tt,
count(*)
from
(
select a.f,a.d from
(
select k,a,b,f,d,g,c,
LAG(c, 1, 0) OVER (partition by f,d ORDER BY B,g) lastc,
LAG(b, 1, 0) OVER (partition by f,d ORDER BY B,g) lastb,
case when c - LAG(c, 1, 0) OVER (ORDER BY tt)>=0 then c - LAG(c, 1, 0) OVER (ORDER BY tt)
else c - LAG(c, 1, 0) OVER (ORDER BY tt)+1000 end aa
from test6 t
) a
where a.g='ToFront()=TRUE' and a.aa>90 )
order by f,d,b,g
) b
group by b.hours,
case when overlap<10 then '<10ms'
when overlap<20 then '10-20'
when overlap<30 then '20-30'
when overlap<40 then '30-40'
when overlap<50 then '40-50'
when overlap<60 then '50-60'
when overlap<70 then '60-70'
when overlap<80 then '70-80'
when overlap<90 then '80-90'
else '>90ms'
end
结果统计出来了,结果非预期的,又对几条数据进行了统计和明细的对比,发现确实有些小问题,可问题出在哪里,也说不清楚。
为了解释清楚这个问题,还是对数据加上行号吧,再次进行对比,发现数据的位置变化了,和原本的日志顺序是不一样的。
为了解决这个问题,还是用rownum加上表数据生成到另外一张测试表吧,再去看看行号和日志的顺序是否能够对应,却发现日志的插入顺序和行号是不一致的!
又问了下同事,业务逻辑到底是怎样的,答曰:日志中上下文的顺序是很严格的
看来需要彻底解决行号问题了。
又在Excel中做了一下测试,Excel做测试很容易,先获取上条记录的毫秒信息,再进行排序,再把数据进行筛选,然后再进行分组判断,最后进行交叉表的生成。
对应大数据量来说,Excel的拖拉显然就满了很多,其次还需要函数、排序、复制数据,总的来说还是比较耗时的。
还是想想怎么解决行号问题吧,确保行号就是数据的原始顺序,首先加了一个sequence,后来又在该表中增加了一个触发器,然后把数据重新导入一遍
create or replace trigger trigger_test6
before insert on test6
for each row
declare
begin
select tt.nextval into :new.tt from dual;
end trigger_test6;
再去验证数据的顺序,这次才算正常了
数据正常了,业务逻辑就简单多了,只需要把最内核的部分修改一下,按行号排序即可
select rr,k,a,b,f,d,g,c,
LAG(c, 1, 0) OVER (ORDER BY tt) lastc,
LAG(b, 1, 0) OVER (ORDER BY tt) lastb
from test6 t
统计完成后,再拷贝到Excel中进行数据透视表转换,再把表格数据拷贝出来,加一些美观信息即可。
该件事情还是没有得到完美解决
主要是毫秒的处理,理论上是时间的直接相减即可,可由于Oracle的date类型无法直接处理,只能采用日志中的毫秒字段进行相减了,碰到相减为负的,则再加回来1000,多少有些问题。
再其次, oracle导入时的数据顺序有问题,不过我想也许是我自己还没找解决问题的根本原因吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25