
利用大数据优势 摆脱“管道”困境
运营商发展大数据具有其他行业无可比拟的优势,主要体现在:一、运营商掌握数据全面充足。电信的领域之中,数以亿计的通信用户基数保证了数据的海量和多元性。二、数据提供的可持续性。通信网络的时时存在为数据的持续和速度提供了保证。三、运营商对数据可以有效利用。运营商可以通过对海量数据的有效分析,更加精准、更加高效地把握用户需求,为广大用户和社会各界提供他们需要的产品和服务。
大数据概念很热门,在互联网行业,Google公司起步最早,目前已经拥有庞大的数据搜集和分析系统,发展相对成熟;苹果、Facebook和国内的淘宝公司也在加速大数据库建设,并且在公司业务分析和产品创新方面有所应用。就运营商来说,大部分国家和地区都在发展探索,一些发达国家运营商在大数据商用上已起步。尽管有些国家取得突破,但是总体来说,全球运营商大数据还处在粗放的发展阶段。
国内的大数据发展挑战
国内运营商由于技术、数据系统限制、用户隐私和商业模式不明确等问题,目前大数据运营只处在探索阶段。运营商利用大数据需应对四方面挑战。
第一,国内运营商系统分散建设,难以实现资源共享。经营分析、信令监测、综合网络分析、不良信息监测、上网日志留存等大数据系统分专业建设,其中部分系统分省建设,造成资源重复建设、应用重复开发、专家资源无法共享。
第二,数据处理种类多,单一技术难以实现。各大数据系统数据模型不统一,只具备结构化数据处理能力,无法支持非结构化、半结构化数据处理,无法满足互联网类业务发展要求。
第三,如何避免隐私泄露问题未能解决,大数据运营有风险。人们对于隐私问题越来越重视,数据公司掌握大量数据和数据制造者要求隐私权之间的矛盾,使得大数据使用变得困难。
第四,尚未确立商业运营模式。运营商掌握的数据很多,但是这些数据应该怎样应用,给谁用,应用收益是否可以抵消数据开发分析的成本,这一系列问题也让国内运营商非常困扰。
探索大数据的运营模式
尽管大数据商用道路上存在困难,但是由于运营商经营大数据的先天优势,互联网时代沦为管道的压力,还有大数据时代信息价值的高昂,使得探索和发展大数据是运营商最明智的选择和最好的出路。
中国联通目前正在着手对大数据业务进行研究,并已经成立了云数据运营中心,计划依靠该部门,逐步尝试开展大数据业务的运营工作,甚至有计划将该运营中心公司化,使之独立运营。中国联通已经在“移动通信用户上网记录集中查询与分析支撑系统”上引入了基于英特尔发行版Hadoop的大数据解决方案,用于支撑全网数亿用户的查询工作。
中国电信认为最有价值的大数据应用表现在四方面,分别是语音数据分析、视频数据分析、网络流量分析、位置数据分析。第一,利用大数据处理平台分析呼叫中心海量语音数据,建立呼叫中心测评体系和产品关联分析,可为如保险公司等提供基于自动语音识别的大数据分析系统;第二,基于智能图像分析能力的视频索引、搜索、摘要服务,从海量视频挖掘有价值的视频信息,提供公用视频图像分析,中国电信全球眼智能系统在智慧城市、平安社区、交通监管等领域大规模的使用。第三,通过分析互联网流量及协议信息,对一般性网络使用者的行为习惯分群组提供有针对性的网络便利性服务,比如精准广告;第四,通过LBS系统平台,对移动通信使用者的位置和运动轨迹进行分析,实现热点地区的人群频率的概率性有效统,比如根据景区人流进行基站优化。
中国移动在三家运营商中大数据优势最明显,因为中国移动承载了最多的用户数据。中国移动经营分析系统从2001年开始建设,目前移动业务支撑系统主要依赖云技术,并开发了“彩云”云存储应用产品。在数据流量业务成为主营业务的阶段,移动正积极部署通过各类业务和网络运营数据的分析,通过数据驱动业务流程,以培养用户习惯。将来,移动将进一步精确洞察数据,从数据成本中心向数据运营中心转变,与合作伙伴开展业务合作。
大数据发展之建议
首先解决隐私问题
美国棱镜门掀起了政府部分和公众对于信息泄露的恐慌。在信息泛滥的时代,信息泄露已经成为了首要解决的问题,也是阻碍运营商大数据商用的绊脚石。日本运营商NTT Docomo正是因为没解决客户隐私问题阻碍了大数据发展。就我国来说,随着人们越来越强烈的隐私保护要求,隐私问题也亟待解决。
解决隐私问题,首先需要运营商有隐私意识,对客户信息搜集有法案地系统保护,防止客户资料泄露。目前,在“大数据”业务的开发中,我国三大运营商将在技术上采取更加系统全面的方式,对用户隐私进行保护。其中一个重要行动,就是要全面升级客户资料档案库;同时,不断提高客户资料管理系统的安全保护能力,加强账号管理。为确保用户隐私,本地三大运营商短信中心系统也将继续实行目前已不留存用户短息内容等原始信息,对垃圾短信的拦截则通过系统设置自动执行等措施,并将采取更加科学完善的技术措施和操作规范,为广大用户提供“大数据”时代的安全应用环境。其次,运营商需意识到对于某一领域批量无记名数据的利用并不会泄露具体到个人的信息,所以运营商利用大数据有很大的空间。
支撑内部语音与数据增值服务
第三方行业需要购买数据,但对于运营商来说,数据是现成的,而且还可以有效避开隐私的问题。大数据对于提高运营商内部运营水平来说具有重大意义。具体有以下作用:一、分析用户行为,改善用户体验。譬如通过分析用户上网时段,优化流量套餐设计;通过分析客户套卡品牌比例和品牌对象,改善套卡设计,更具针对性地推广套卡;通过用户偏好分析,及时、准确进行业务推荐和客户关怀。第二、优化网络质量。运营商通过对用户的位置、时间、职业、年龄、业务偏好、业务流量及所需带宽等进行关联分析,实现对用户业务流量的甄别和用户级的网络资源控制,细分用户业务流量,将数据流量与用户、网络资源相匹配。第三、刺激业务创新。通过用户业务大数据分析识别用户行为习惯和用户偏好,从而为用户提供个性化、差异化的电信服务,提高电信用户黏性和忠诚度,挖掘新的业务机会,实现电信业务价值的最大化。
尝试与第三方公司合作
大数据最具价值的还是数据本身。电信运营商在数据量和及时持续获取方面具有无可比拟的优势。数据整理分析成本非常高,而且数据来源往往分散在各个部门的情况下,运营商内部需要做大量的工作才能进行有效的精华数据深度挖掘,所以如果没有来自合作方的非常明确需求,且该需求能带来相匹配的商业价值,大数据的挖掘非常困难,业务发展就可能陷于停滞。所以与第三方合作,共同承担开发成本,有可以预见的收益,对于开发和利用大数据非常必要
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13