
双因子方差分析:R中的双因子ANOVA
单因子方差分析是验证多个群组均值是否相等的非常有用的技术。但一些更复杂的问题这个技术就无能为力了。例如,有时需要考虑变异的两个因子来决定群组之间的平均依赖于群组分类(“zone”),还是第二级需考虑的变量(“block”)。在这个情形中应该使用双因子方差分析(双因子ANOVA)。
我们立刻以一个例子开始,以便于理解这个统计方法。收集的数据组织在双项表(double entry tables)中。
公司董事收集了5年的收入(thousand dollars),而每年都统计到每个月份。你想看看收入是依赖于年呢,还是依赖于月份,或者与这两个因素都无关。
理论上,这个问题可以用horizontal ANOVA和vertical ANOVA来解决,以便于验证每年的平均收入是否相同,或者由月份计算的平均收入是否相等。这需要许多计算,因而我们更愿意用双因子ANOVA,能够及时提供结果。这是已统计的收入表,分别由年和月份分类:
首先将数据录入,然后创建月份和年两个维度的因子变量:
[plain] view plain copy
revenue = c(15,18,22,23,24, 22,25,15,15,14, 18,22,15,19,21,
23,15,14,17,18, 23,15,26,18,14, 12,15,11,10,8, 26,12,23,15,18,
19,17,15,20,10, 15,14,18,19,20, 14,18,10,12,23, 14,22,19,17,11,
21,23,11,18,14)
months = gl(12,5)
years = gl(5, 1, length(revenue))
现在就拟合线性模型和产生ANOVA表:
[plain] view plain copy
fit = aov(revenue ~ months + years)
anova(fit)
Analysis of Variance Table
Response: revenue
Df Sum Sq Mean Sq F value Pr(>F)
months 11 308.45 28.04 1.4998 0.1660
years 4 44.17 11.04 0.5906 0.6712
Residuals 44 822.63 18.70
这样来解释结果:
不同月份之间差异额显著性为:F=1.4998。这个值比查表值低,并且p-value>0.05。因此我们接受null hypothesis,即根据月份来评估的收入均值都相等,所以变量“月份”在收入上没有影响。
不同年之间差异额显著性为:F=0.5906。这个值比查表值低,并且p-value>0.05。因此我们接受null hypothesis,即根据年来评估的收入均值都相等,所以变量“年”在收入上没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26