
Excel-箱线图(数据分布)分析
箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数
箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):
Q1的位置=(n+1)/4
Q2的位置=(n+1)/2
Q3的位置=3(n+1)/4
对于数字个数为奇数的,其四分位数比较容易确定。例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:
Q1的位置=(11+1)/4=3,该位置的数字是15。
Q2的位置=(11+1)/2=6,该位置的数字是40。
Q3的位置=3(11+1)/4=9,该位置的数字是45。
而对于数字个数为偶数的,其四分位数确定起来稍微繁琐一点。例如,数字“8、17、38、39、42、44”共有6项,位置计算结果如下:
Q1的位置=(6+1)/4=1.75
Q2的位置=(6+1)/2=3.5
Q3的位置=3(6+1)/4=5.25
这时的数字以数据连续为前提,由所确定位置的前后两个数字共同确定。例如,Q2的位置为3.5,则由第3个数字38和第4个数字39共同确定,计算方法是:38+(39-38)×3.5的小数部分,即38+1×0.5=38.5。该结果实际上是38和39的平均数。
同理,Q1、Q3的计算结果如下:
Q1 = 8+(17-8)×0.75=14.75
Q3 = 42+(44-42)×0.25=42.5
Excel为计算四分位数提供了QUARTILE(array,quart)函数,其中array参数用于指定要计算四分位数值的数组或数值型单元格区域,quart指定返回哪一个四分位值,可用值如下:
0,返回最小值;
1,返回第一个四分位数;
2,返回第二个四分位数,即中位数;
3,返回第三个四分位数;
4,返回最大值。
图9-51箱线图的结构
四分位间距框的顶部线条是第三四分位数的位置,即Q3,表示有75%的数据小于等于此值。底部线条是第一四分位数的位置,即Q1,表示有25%的数据小于此值。则整个四分位间距框所代表的是数据集中50%(即75%-25%)的数据,四分位间距框的高度就是这些数据涉及的范围,能够表现出数据的集中程度。Q2是数据中位数的位置。
Whisker上限是延伸至距框顶部1.5倍框高范围内的最大数据点,Whisker下限是延伸至距框底部1.5倍框高范围内的最小数据点,超出Whisker上限或下限的数值将使用星号“*”表示。但是,在Excel中绘制箱线图需要借助股价图来实现,因此无法展现异常值,Whisker上限将延伸至数据最大值的位置,Whisker下限将延伸至数据最小值的位置。
3.绘制箱线图
图9-52中的A2:F8区域和H2:M8区域分别是华北和华南是某段时间客户订单收货天数的统计结果,C11:C15和J11:J15是利用QUARTILE函数计算的华北、华南收货天数的四分位数结果。
图9-52收货天数的四分位数计算结果
在Excel中绘制箱线图需要借助股价图的“开盘-盘高-盘底-收盘”图来实现。根据Excel绘图时放置数据系列的位置,开盘、盘高、盘底、收盘应分别对应Q1、Q0、Q2、Q4。下面是绘图步骤:
准备图表数据。根据对应关系,在表格的B18:E18区域分别输入华北客户的Q1、Q0、Q2、Q4统计数字,将Q3输入到最后的F18单元格中,在A18中输入一个日期型数据(注意,必须为日期型),如“2013/1/1”。然后在第19行中输入华南客户的数据,A19中的日期递增1天,最终结果如图9-53所示。
图9-53准备图表数据
插入图表。选定A18:E19区域,在“插入”功能区的“图表”模块中单击“其他图表”,选择股价图部分的“开盘-盘高-盘底-收盘图”按钮,即可看到绘制的股价图,如图9-54所示。
图9-54插入股价图
添加Q3数据系列。由图9-54可以看出,四分位间距框的顶部线条使用的是Q4(最大值)位置,而是不是箱线图要求的Q3位置。右击绘图区,在弹出的快捷菜单中选择“选择数据”命令,打开“选择数据源”对话框。单击“添加”按钮打开“编辑数据系列”对话框,在“系列名称”折叠框中输入“Q3”,在系列值折叠框中选择F18:F19区域,单击“确定”按钮即可看到股价图变成了箱线图,如图9-55所示。四分位间距框的高度小了很多,单击顶部线条与Whisker上限交汇处,可以看到使用的是Q3数据。
图9-55添加Q3数据系列
显示中位数线。至此,四分位间距框虽然已经绘制正确了,但是还缺少中位数线,即Q2。选择图例中的“系列3”标签,然后单击鼠标右键,在弹出的快捷菜单中选择“设置数据系列格式”命令,打开“设置数据系列格式”对话框。在“数据标记选项”中将标记类型设置为内置的“-”形状,单击“关闭”按钮即可看到中位线显示了出来,如图9-56所示。
图9-56显示中位数线
美化图表。首先要修改分类轴(横轴)标签,由于插入股价图时的限制在A18和A19单元格中输入了日期型数据,但是在图表插入后,可以将其修改为其他数据类型的值,因此在A18和A19单元格分别输入“华北”、“华南”。其次是删除图例栏,对于箱线图而言这并不需要。最后,可以为图表添加一个标题。最终美化后结果如图9-57所示。
图9-57美化后的图表
由图9-57可以看出,华北和华南客户的中位数位置、四分位间距框的位置与高度基本相同,说明两区域的客户收货天数基本相同。但是,从Whisker上限和Whisker下限看,华南客户的收货天数范围小于华北客户,说明流程更加稳定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13