
企业大数据运营核心数据能力探讨
1 背景和需求
当今企业面临内外部重重挑战,例如市场竞争加剧、利润下滑、企业增长放缓等,而伴随移动互联网迅猛发展、社会大众观念意识进步和消费模式转变,社会化需求呈爆炸式增长,这为各行业带来巨大的市场空间,对企业是一个新的历史机遇。
那么,企业应如何应对挑战并把握历史机遇?在当今大数据时代,企业应围绕高效率、高效益和提升客户服务品质的战略目标,以数据说话,全面了解企业运营状况、深入发现企业存在的问题,体系化剖析并提出改进建议,从而促进企业精细化运营持续优化;同时,企业还需发掘大数据所隐藏的客户诉求,洞察客户需求,创造性发掘新的价值增长点,从而帮助企业实现持续盈利。
为了切实发挥大数据对企业内部精细化运营和外部商机发掘的价值,企业需要锻造大数据运营能力,借助成熟的商业智能和大数据技术,对企业内外部结构化/非结构化数据进行实时(准实时)捕获、规整、深度加工挖掘,从数据中提炼有价值的信息和知识,面向企业各层级人员定制提供能解决实际业务问题的数据应用。
2 大数据核心能力
企业应锻造什么样的大数据核心运营能力呢?大数据运营的核心能力框架如下图所示:
如图1所示,大数据运营核心能力框架包括数据价值能力、数据基础能力。首先,企业应打造针对数据自身的数据基础能力;然后,基于数据基础能力构建数据价值能力,建设个性化业务应用。
1. 大数据价值能力
大数据价值能力构建在大数据基础能力之上,以企业战略目标为导向,提供面向不同人员的价值应用,总体上可分为三类:为企业内部领导、管理、执行及一线各层级人员提供精细化运营相关的数据应用、为合作伙伴提供可带来利润的产品型数据应用,以及为最终客户提供可提升客户体验和感知的服务型数据应用。
2. 大数据基础能力
大数据基础能力主要包括大数据规整能力、数据管控能力、数据交换共享能力、知识沉淀积累和供应能力,以及对数据价值应用的支撑能力。
高效的大数据规整能力
对企业来说,大数据规整能力用于帮助企业摸清数据资产家底,包括企业内外部数据的高效获取、整合、加工、存储,形成数据模型标准化、数据分类和编码统一、数据跨业务领域融合的企业级数据集中存储,提供企业级统一信息视图。
除了要继续提供传统的结构化数据处理能力外,还需要加入对诸如音频、视频、文档、流数据等非结构化数据的处理能力,以及对日志数据、微博、社交媒体信息等半结构化数据的处理能力。要能够将非结构化/半结构化数据转换成可分析挖掘的结构化数据。
体系化的数据管控能力
企业通过大数据规整能力形成企业数据资产的统一视图的过程,以及后续提供使用的过程,均需进行全程数据治理,确保数据质量可靠、受控使用、数据可理解、数据资源配置可持续优化等。因此,需要对数据加工处理的全过程以及数据整个生命周期的各种活动进行规范化、体系化管理。
数据管控体系主要包括管控目标、管控对象、管控措施、管控组织保障、管控流程制度和规范标准,以及管控平台支撑。管控对象主要有元数据、数据质量、数据安全、数据生命周期、数据模型及数据标准等,一些企业也通过数据管控实施企业级的统一主数据管理,以此解决跨系统流转的企业核心业务数据的一致性和协同问题。
集中的数据交换共享能力
企业花费力气形成自己的数据中心存储后,除了给各类用户提供数据服务,还需要向企业的各类业务系统开放共享,使数据中心与业务系统形成数据闭环,实现业务协同。为此需要建设统一的交换共享平台,集中管理数据交换共享接口、监控接口运作,实现企业数出一门、高效共享。
持续的知识沉淀供应能力
企业日常决策、管理、生产、业务运营、客户服务、资源保障、财务运营等过程,以及IT系统规划、建设和运维过程,都将持续形成各自的专业知识。企业需要提供知识的收集、分类、管理维护和嵌入式使用能力,及时收集知识并有效管理,给各层级人员提供方便灵活的借鉴参考,从而有效提升企业运营效率和质量,降低运营成本。
可扩展的数据应用支撑能力
数据应用支撑能力指为数据中心自有及第三方的大数据应用提供统一的载体,面向各层级用户,提供便捷灵活、多种终端的随时随地访问支撑,还包括数据查询、数据挖掘、数据可视化展现(例如GIS)等应用支撑能力。
3 结束语
企业精细化运营是当今企业发展的必经之道,为了切实实现从粗犷式运营向精细化运营转变,企业需要以数据说话,把握当今大数据机遇,锻造企业自身的大数据运营能力,从而助力企业内部精细化运营及外部商机发掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28