
企业大数据运营核心数据能力探讨
1 背景和需求
当今企业面临内外部重重挑战,例如市场竞争加剧、利润下滑、企业增长放缓等,而伴随移动互联网迅猛发展、社会大众观念意识进步和消费模式转变,社会化需求呈爆炸式增长,这为各行业带来巨大的市场空间,对企业是一个新的历史机遇。
那么,企业应如何应对挑战并把握历史机遇?在当今大数据时代,企业应围绕高效率、高效益和提升客户服务品质的战略目标,以数据说话,全面了解企业运营状况、深入发现企业存在的问题,体系化剖析并提出改进建议,从而促进企业精细化运营持续优化;同时,企业还需发掘大数据所隐藏的客户诉求,洞察客户需求,创造性发掘新的价值增长点,从而帮助企业实现持续盈利。
为了切实发挥大数据对企业内部精细化运营和外部商机发掘的价值,企业需要锻造大数据运营能力,借助成熟的商业智能和大数据技术,对企业内外部结构化/非结构化数据进行实时(准实时)捕获、规整、深度加工挖掘,从数据中提炼有价值的信息和知识,面向企业各层级人员定制提供能解决实际业务问题的数据应用。
2 大数据核心能力
企业应锻造什么样的大数据核心运营能力呢?大数据运营的核心能力框架如下图所示:
如图1所示,大数据运营核心能力框架包括数据价值能力、数据基础能力。首先,企业应打造针对数据自身的数据基础能力;然后,基于数据基础能力构建数据价值能力,建设个性化业务应用。
1. 大数据价值能力
大数据价值能力构建在大数据基础能力之上,以企业战略目标为导向,提供面向不同人员的价值应用,总体上可分为三类:为企业内部领导、管理、执行及一线各层级人员提供精细化运营相关的数据应用、为合作伙伴提供可带来利润的产品型数据应用,以及为最终客户提供可提升客户体验和感知的服务型数据应用。
2. 大数据基础能力
大数据基础能力主要包括大数据规整能力、数据管控能力、数据交换共享能力、知识沉淀积累和供应能力,以及对数据价值应用的支撑能力。
高效的大数据规整能力
对企业来说,大数据规整能力用于帮助企业摸清数据资产家底,包括企业内外部数据的高效获取、整合、加工、存储,形成数据模型标准化、数据分类和编码统一、数据跨业务领域融合的企业级数据集中存储,提供企业级统一信息视图。
除了要继续提供传统的结构化数据处理能力外,还需要加入对诸如音频、视频、文档、流数据等非结构化数据的处理能力,以及对日志数据、微博、社交媒体信息等半结构化数据的处理能力。要能够将非结构化/半结构化数据转换成可分析挖掘的结构化数据。
体系化的数据管控能力
企业通过大数据规整能力形成企业数据资产的统一视图的过程,以及后续提供使用的过程,均需进行全程数据治理,确保数据质量可靠、受控使用、数据可理解、数据资源配置可持续优化等。因此,需要对数据加工处理的全过程以及数据整个生命周期的各种活动进行规范化、体系化管理。
数据管控体系主要包括管控目标、管控对象、管控措施、管控组织保障、管控流程制度和规范标准,以及管控平台支撑。管控对象主要有元数据、数据质量、数据安全、数据生命周期、数据模型及数据标准等,一些企业也通过数据管控实施企业级的统一主数据管理,以此解决跨系统流转的企业核心业务数据的一致性和协同问题。
集中的数据交换共享能力
企业花费力气形成自己的数据中心存储后,除了给各类用户提供数据服务,还需要向企业的各类业务系统开放共享,使数据中心与业务系统形成数据闭环,实现业务协同。为此需要建设统一的交换共享平台,集中管理数据交换共享接口、监控接口运作,实现企业数出一门、高效共享。
持续的知识沉淀供应能力
企业日常决策、管理、生产、业务运营、客户服务、资源保障、财务运营等过程,以及IT系统规划、建设和运维过程,都将持续形成各自的专业知识。企业需要提供知识的收集、分类、管理维护和嵌入式使用能力,及时收集知识并有效管理,给各层级人员提供方便灵活的借鉴参考,从而有效提升企业运营效率和质量,降低运营成本。
可扩展的数据应用支撑能力
数据应用支撑能力指为数据中心自有及第三方的大数据应用提供统一的载体,面向各层级用户,提供便捷灵活、多种终端的随时随地访问支撑,还包括数据查询、数据挖掘、数据可视化展现(例如GIS)等应用支撑能力。
3 结束语
企业精细化运营是当今企业发展的必经之道,为了切实实现从粗犷式运营向精细化运营转变,企业需要以数据说话,把握当今大数据机遇,锻造企业自身的大数据运营能力,从而助力企业内部精细化运营及外部商机发掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11