
医疗大数据平台推进医学道德形态重构
大数据时代的到来使医学呈现出个体化发展趋势,而基因技术的应用又使精准医学凸显。个体化医疗与精准医疗的结合,预示了大数据时代医疗变革的方向:通过数字化人体引发医疗健康革命。
大数据时代,一种潜在的变化正在显现,掌控个人的医疗过程和医疗保健成为变化的核心。医疗大数据平台的运营会随着规模的扩大和效率的提高而关涉总体人类健康、社会公共善、共享的伦理和个人医疗服务方面的改善,从而推进医学道德形态的革命性重构。
首先,通过个体化医学改善总体形态的人类健康。数字化人体和基因组学的重要意义在于:通过大数据技术和基因筛查技术的融合运用,带来医学重心的转移或变化。它提供给人们的医学劝告主要有两条:其一,预防比治疗更重要;其二,医学只有遵循个体化科学才能带来整体人类健康状况的实质性改善。在大数据时代,手机将成为生命线,它使边远地区的人们获得所需要的医疗服务,并通过数据反馈为社区创造一个数字化的网络系统。通过大数据,以患者为中心的医疗可以不受时空限制,在健康培训、在线诊断、预防和灾疫应对等领域一展所长。
其次,通过构建公共健康之善疏解医患紧张。数字化时代医学道德形态重构的重点,是通过个体化科学构建公共善,并由此疏解医患紧张关系。生命伦理学对个体化权利的强调和对总体人口健康的强调之间存在明显断裂。然而,个人自主或自我决定如果没有基于“数字化人体+基因测序”的个体化医学的支持,只能是一种抽象的权利原则。医疗大数据提供给个人的健康或诊疗指南,无论对病人还是对医生,都类似于航海图。这为人们提供了一个从未有过的世界观,它使病人真正成为医学的中心。
再次,通过融合的医学展现开放共享的伦理。随着数字化时代的来临,各国政府都认识到数据开放的重要性,出台了数据开放的法令。医疗大数据将患者作为医疗信息的点连成一片数据之海。因此,一种开放共享的医疗信息技术系统可以通过相关关系的挖掘而预测某些疾病的分布或流行。数据的开放共享将带来一系列融合,进而将快速成熟的数字化、非医学领域的移动设备、云计算和社交网络与蓬勃发展的基因组学、生物传感器和先进成像技术的数字化医学领域合为一体。医学或医疗技术可能因为更偏重预防而体现“上医医未病之病”的理念。
最后,通过开放整合的专家团队提供个体化医疗服务。基于网络平台的医疗技术实践,使得医学团队的诊疗模式成为未来医疗诊治的基本模式。大数据时代的医疗技术实践,为“团队医学”提供了新的形式,医学不再是个体医生的单打独斗,而是基于网域空间的专家团队为患者提供量身定制的个体化医疗服务。以团队形式为个体提供医疗健康服务,建构了真正以患者为中心的医学道德形态。从个体收集到的数据的大批汇总最终将会创建一种良性反馈的伦理性圏层,使健康计划的所有参与者受益,并鼓励愈来愈多的人参与进来。
大数据时代的健康革命,在技术形态上,取决于数字化人体基础上的精准医学模式的建立。无线传感器、大数据与基因组学的结合是其先锋。这种医学道德形态的重构凸显了三大伦理道德难题。
第一,个人隐私及安全问题。在数字化、信息化时代,医疗行业面临保护信息安全和保护个人隐私的双重困扰。安全隐患和隐私风险之一,是员工使用自带移动设备连接医疗系统的IT基础设施所带来的风险,这是恶意软件侵入的最薄弱环节,被称为医疗领域的“自带设备”难题。推行移动化或个体化医疗计划(或健康计划)是许多顶尖级诊所和医院的计划,实施过程必然会面临该难题。除此之外,还面临医疗大数据或精准医学模式自身带来的问题,比如医疗设备或监控器的数据失窃问题等。与此同时,医院利用数据平台收集和分析某患者的敏感信息是否侵犯个人隐私?政府机构和企业对个人健康信息进行收集、监控和分析处理是否符合隐私规则?医疗数据、商业数据、科研数据等应遵循何种收集规则?参与者隐私的保护既是医学研究得以展开的前提,又是一切健康计划得以实施的前提。只有在保护个人隐私与充分利用数据库之间寻求一种平衡,才能应对大数据时代医学生命伦理学的隐私及安全伦理问题。
第二,数据的真实可靠问题。如何防范数据失信或失真是数据共享遭遇的基准层面的伦理挑战。建立在数字化人体基础上的医疗技术实践,其本身就预设了一条不可突破的道德底线。由于人体及其健康状态以数字化的形式被记录、存储和传播,因此形成了与实体人相对应的镜像人或数字人。失信或失真的数据,导致被预设为可信的精准医疗变得不可信。例如,如果有人担心个人健康数据或基因数据对个人职业生涯和未来生活造成不利影响,当有条件采取隐瞒、不提供或提供虚假数据来玩弄数据系统时,这种情况就可能出现,进而导致电子病历和医疗信息系统(HIT)以及个人健康档案(HER)不准确。如何治理或防范数据失信或失真,是数字化时代数据共享面临的一种伦理挑战,它构成大数据时代生命医学伦理学的重大课题。
第三,数字鸿沟或价值鸿沟带来的挑战。数字鸿沟指不同社会群体对于数字化技术或信息技术使用的巨大差异,分为接入、应用、知识、价值四个方面。随着接入问题的逐步解决,应用和知识方面的鸿沟正在缩小,价值鸿沟变得越来越突出。这提示我们必须充分重视数字化健康革命带来的价值观变革。只有缩小价值鸿沟,使人们认识到,个体化医疗和精准医学基础上的个人健康革命,是一种将个体与总体进行融合的医学变革,它展现了数字化时代健康革命的价值核心即以患者为中心的医学道德形态,才能让更多的人参与到医疗大数据平台建设之中。
大数据、基因组学、移动医疗和精准医学的基本原理,是连通最小行动者和最大数据计算之总体,这是现代医疗技术在大数据时代展现的伦理特质。大数据对个人和集体相互关系的重新定位无论对个人还是集体都产生了不可低估的影响——它提供了在一个日益个体化的现代社会,个人与集体密不可分的结合方式,迫使个人重新思考集体性或总体性价值的时代意蕴。当然,这种思考必须以对个人的自由、尊严和权利的维护为前提。与此同时,从群体出发或从整体出发的伦理理念重新获得了应有地位,并与强调关联性思维、整体和谐理念的中国伦理文化构成一种内在契合。而这正是大数据时代生命医学伦理学最引人瞩目的发展方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10