京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于大数据存在多少偏见乃至误读呢
近几年,得益于资本追捧、企业造势、媒体推广以及公众往往跟风式参与,一些新概念或被引进、或被改造、或被提炼,其中代表性的有:大数据、互联网思维、“互联网+”、云计算、智慧城市、媒体融合、人工智能、IP、VR/AR等。其传播套路(流行持久度)大致为:今天你爆红,明日我当道,各领风骚真热闹。只是,在一阵阵浮躁、喧嚣与狂热的背后,这些新概念究竟有多少真正被正确理解了,而又有多少存在偏见乃至误读呢?
特别值得说说的,首推大数据。
对这个舶来的、随着2012年在有着“大数据商业应用第一人”之称的维克托·舍恩伯格那本全球级畅销书《大数据时代》隆重登场的新概念,先是在国内的互联网业界刮起一阵超级旋风,继而风靡了整个社会,由科技界的热门词变身为社会高频词,人人争说大数据,唯恐掉队落伍。说得更尖锐些,和绝大多数“新概念”一样,“大数据”已经成了许多闭门造车者竭尽全力宣扬的主题。这种现象与2005年盛极一时的Web2.0革命论如出一辙。那么,结果如何呢?在“中国互联网老兵”谢文看来,“一个概念,无论它可以抽象到多么高深的程度,其形成、演变、推广的过程往往却很实在、具体,充斥着不同社会力量的博弈。这个概念的对错与否、生命力的长短、对社会的影响往往不取决于概念本身,而在于它的社会价值”。因此他得出结论,“关于大数据,你知道的都不对!”
《大数据经济》是谢文的第二本书,距离上一部《为什么中国没出Facebook》已过去了五年。很难想象,自上世纪90年代中期留美归国后,就先后在中公网及其所属联众游戏网站、互联网实验室等知名企业担任CEO、董事等职务,曾担任和讯网CEO和雅虎中国总裁等职的业界大咖,频繁在各大纸媒撰文发表业界观察和产业心得的人,在出书这个举动上却如此“惜字如金”。但或许也正是如此,使阅读谢文作品成了一种智性训练和与智者的对话。在谢文冷静、平和的文字背后,体现了他作为中国互联网发展数朝元老的老练沉稳,这种面对汹涌浪潮波澜不惊的定力,除了来自专业理性的思考,便是长年累月、一以贯之的行业沉淀。
按照架构,《大数据经济》旨在向公众澄清有关大数据的一些谬误,正本清源、回归真相。而主体内容则收录了谢文从2012年上半年起至今陆陆续续写的一系列关于大数据现象的专栏文章。虽然每篇议题各有侧重、篇幅也长短不一,但核心绕不开以下几个论点:第一,时下,对大数据的概念界定实际上仍然模糊不清、模棱两可;第二,当前大数据实践都还属于摸着石头过河的阶段,这符合产业发展规律,大体来看,第一波创新尝试集中在网络业、制造业和公共服务业以及三者之间的融合互动上;第三,大数据是一种世界观、历史观、价值观、方法论;第四,数据服务将是未来,而数据共享与公开将是大数据蓝海的历史使命。当然,他更不否认接下来的第五点:大数据时代对社会现有结构、体制、文化和生活方式的冲击与变革远大于计算机时代和互联网时代。“现在正是大数据带来的大变革的前夜,面对这场势将席卷全球的社会大变革,主动比被动好,早动比晚动好,不动不是一个选择。”
仅就这些观点而论,谢文其实并不孤单,就拿国内来说吧,至少像《决战大数据》的作者车品觉、《大数据》和《数据之巅》的作者涂子沛等几位,都与他“英雄所见略同”。
此外,我们也看到了谢文的忧虑。在书中他忧心忡忡地指出,大数据是整个Web2.0革命的重要组成部分,世界网络业的领军公司,例如Google、Facebook、苹果和亚马逊已占据了先发的位置。我国网络业中哪家公司能急起直追,谁就是先行者,否则,就只能扮演受害者的角色了。至于未来的战略方向,谢文建议有识之士重视数据服务业,数据服务业和现有的相关产业的根本区别在于其商业模式是数据驱动型,是对大数据的深度分析加工,是对大数据的多重利用和深度利用,是对现有简单直接商业模式的增值服务。《大数据经济》提到,包括苹果公司和谷歌在内的世界巨头,都在不计成本地全方位增加生产和获取大数据,就是为了在走向数据服务业的过程中赢得先发优势,为未来的领先地位在下一盘很大的棋。
谢文为此毫不客气地批评国内公司一拥而上生产智能手机的现象:“如果自身没有成熟配套的操作系统、开放平台、云计算后台和数据分析加工平台,单兵突进只做手机,也许在某个时段能赚点钱,但从长远看是没有前途的。那些在手机首页集成点自己的服务,高呼抢占网络入口口号的伎俩,在滚滚而来的大数据洪流面前显得那么苍白无力。何不舍弃鸡肋,重新定位,发挥优势,争取不在大数据时代掉队呢?”商业、资本固然有“趋利性”的一面,也就是什么赚钱做什么,而谢文的洞见在于,“趋利性”与“趋势性”并不矛盾,而后者是谋定而后动,去做一些更长远、更深远的产业布局。很可惜,并没有多少人能意识得到这一层,而这恰恰也回应了他当年的“谢氏之问”——为什么中国没有Facebook?
客观地讲,由于《大数据经济》是谢文之前媒体专栏文章的结集,因而在时效性上多少有点欠缺,即便国务院印发的《促进大数据发展行动纲要》也才大半年前的事,但互联网风向转变之快,已不是三五年为一个周期的“后浪推前浪”了。另外,本书还收录了其他非“大数据”主题的文章,议题从移动互联网创新到“互联网+”再到宽带战略、公司研究等等,内容难免显得有些繁杂。不过,鉴于谢文十几年如一日跟踪中国互联网产业的发展步态,锲而不舍地发些看似不合时宜的声音,他的作品仍被笔者列在必读范畴之内。至于媒体把他尊称为“中国的凯文·凯利”,则未免有些不着边际。谢文从来不输出技术哲学,也不信奉先验主义,他只是在持续不断地讲述常识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27