
Python操作SQLite数据库的方法详解
本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下:
SQLite简单介绍
SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身。它是遵守ACID的关联式数据库管理系统,它的设计目标是嵌入式的,而且目前已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了。它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,比如 Tcl、C#、PHP、Java等,还有ODBC接口,同样比起Mysql、PostgreSQL这两款开源世界著名的数据库管理系统来讲,它的处理速度比他们都快。SQLite第一个Alpha版本诞生于2000年5月. 至今已经有10个年头,SQLite也迎来了一个版本 SQLite 3已经发布。
安装与使用
1.导入Python SQLITE数据库模块
Python2.5之后,内置了SQLite3,成为了内置模块,这给我们省了安装的功夫,只需导入即可~
import sqlite3
2. 创建/打开数据库
在调用connect函数的时候,指定库名称,如果指定的数据库存在就直接打开这个数据库,如果不存在就新创建一个再打开。
cx = sqlite3.connect("E:/test.db")
也可以创建数据库在内存中。
con = sqlite3.connect(":memory:")
3.数据库连接对象
打开数据库时返回的对象cx就是一个数据库连接对象,它可以有以下操作:
① commit()--事务提交
② rollback()--事务回滚
③ close()--关闭一个数据库连接
④ cursor()--创建一个游标
关于commit(),如果isolation_level隔离级别默认,那么每次对数据库的操作,都需要使用该命令,你也可以设置isolation_level=None,这样就变为自动提交模式。
4.使用游标查询数据库
我们需要使用游标对象SQL语句查询数据库,获得查询对象。 通过以下方法来定义一个游标。
cu=cx.cursor()
游标对象有以下的操作:
① execute()--执行sql语句
② executemany--执行多条sql语句
③ close()--关闭游标
④ fetchone()--从结果中取一条记录,并将游标指向下一条记录
⑤ fetchmany()--从结果中取多条记录
⑥ fetchall()--从结果中取出所有记录
⑦ scroll()--游标滚动
1. 建表
代码如下:
cu.execute("create table catalog (id integer primary key,pid integer,name varchar(10) UNIQUE,nickname text NULL)")
上面语句创建了一个叫catalog的表,它有一个主键id,一个pid,和一个name,name是不可以重复的,以及一个nickname默认为NULL。
2. 插入数据
请注意避免以下写法:
# Never do this -- insecure 会导致注入攻击
pid=200
c.execute("... where pid = '%s'" % pid)
正确的做法如下,如果t只是单个数值,也要采用t=(n,)的形式,因为元组是不可变的。
for t in[(0,10,'abc','Yu'),(1,20,'cba','Xu')]:
cx.execute("insert into catalog values (?,?,?,?)", t)
简单的插入两行数据,不过需要提醒的是,只有提交了之后,才能生效.我们使用数据库连接对象cx来进行提交commit和回滚rollback操作.
cx.commit()
3.查询
cu.execute("select * from catalog")
要提取查询到的数据,使用游标的fetch函数,如:
In [10]: cu.fetchall()
Out[10]: [(0, 10, u'abc', u'Yu'), (1, 20, u'cba', u'Xu')]
如果我们使用cu.fetchone(),则首先返回列表中的第一项,再次使用,则返回第二项,依次下去.
4.修改
In [12]: cu.execute("update catalog set name='Boy' where id = 0")
In [13]: cx.commit()
注意,修改数据以后提交
5.删除
cu.execute("delete from catalog where id = 1")
cx.commit()
6.使用中文
请先确定你的IDE或者系统默认编码是utf-8,并且在中文前加上u
x=u'鱼'
cu.execute("update catalog set name=? where id = 0",x)
cu.execute("select * from catalog")
cu.fetchall()
[(0, 10, u'\u9c7c', u'Yu'), (1, 20, u'cba', u'Xu')]
如果要显示出中文字体,那需要依次打印出每个字符串
In [26]: for item in cu.fetchall():
....: for element in item:
....: print element,
....: print
....:
0 10 鱼 Yu
1 20 cba Xu
7.Row类型
Row提供了基于索引和基于名字大小写敏感的方式来访问列而几乎没有内存开销。 原文如下:
sqlite3.Row provides both index-based and case-insensitive name-based access to columns with almost no memory overhead. It will probably be better than your own custom dictionary-based approach or even a db_row based solution.
Row对象的详细介绍
class sqlite3.Row
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic a tuple in most of its features.
It supports mapping access by column name and index, iteration, representation, equality testing and len().
If two Row objects have exactly the same columns and their members are equal, they compare equal.
Changed in version 2.6: Added iteration and equality (hashability).
keys()
This method returns a tuple of column names. Immediately after a query, it is the first member of each tuple in Cursor.description.
New in version 2.6.
下面举例说明
In [30]: cx.row_factory = sqlite3.Row
In [31]: c = cx.cursor()
In [32]: c.execute('select * from catalog')
Out[32]:
In [33]: r = c.fetchone()
In [34]: type(r)
Out[34]:
In [35]: r
Out[35]:
In [36]: print r
(0, 10, u'\u9c7c', u'Yu')
In [37]: len(r)
Out[37]: 4
In [39]: r[2] #使用索引查询
Out[39]: u'\u9c7c'
In [41]: r.keys()
Out[41]: ['id', 'pid', 'name', 'nickname']
In [42]: for e in r:
....: print e,
....:
0 10 鱼 Yu
使用列的关键词查询
In [43]: r['id']
Out[43]: 0
In [44]: r['name']
Out[44]: u'\u9c7c'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14