
Python中如何优雅的合并两个字典(dict)方法示例
字典是Python中最强大的数据类型之一,本文将给大家详细介绍关于Python合并两个字典(dict)的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍吧。
一行代码合并两个dict
假设有两个dict x和y,合并成一个新的dict,不改变 x和y的值,例如
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
期望得到一个新的结果Z,如果key相同,则y覆盖x。期望的结果是
>>> z
{'a': 1, 'b': 3, 'c': 4}
在PEP448中,有个新的语法可以实现,并且在python3.5中支持了该语法,合并代码如下
z = {**x, **y}
妥妥的一行代码。 由于现在很多人还在用python2,对于python2和python3.0-python3.4的人来说,有一个比较优雅的方法,但是需要两行代码。
z = x.copy()
z.update(y)
上面的方法,y都会覆盖x里的内容,所以最终结果b=3.
不使用python3.5如何一行完成了
如果您还没有使用Python 3.5,或者需要编写向后兼容的代码,并且您希望在单个表达式中运行,则最有效的方法是将其放在一个函数中:
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
然后一行代码完成调用:
z = merge_two_dicts(x, y)
你也可以定义一个函数,合并多个dict,例如
def merge_dicts(*dict_args):
"""
Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
然后可以这样使用
z = merge_dicts(a, b, c, d, e, f, g)
所有这些里面,相同的key,都是后面的覆盖前面的。
一些不够优雅的示范
items
有些人会使用这种方法:
z = dict(x.items() + y.items())
这其实就是在内存中创建两个列表,再创建第三个列表,拷贝完成后,创建新的dict,删除掉前三个列表。这个方法耗费性能,而且对于python3,这个无法成功执行,因为items()返回是个对象。
>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and
'dict_items'
你必须明确的把它强制转换成list,z = dict(list(x.items()) + list(y.items())) ,这太浪费性能了。 另外,想以来于items()返回的list做并集的方法对于python3来说也会失败,而且,并集的方法,导致了重复的key在取值时的不确定,所以,如果你对两个dict合并有优先级的要求,这个方法就彻底不合适了。
>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
这里有一个例子,其中y应该具有优先权,但是由于任意的集合顺序,x的值被保留:
>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}
构造函数
也有人会这么用
z = dict(x, **y)
这样用很好,比前面的两步的方法高效多了,但是可阅读性差,不够pythonic,如果当key不是字符串的时候,python3中还是运行失败
>>> c = dict(a, **b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
Guido van Rossum 大神说了:宣告dict({}, {1:3})是非法的,因为毕竟是滥用机制。虽然这个方法比较hacker,但是太投机取巧了。
一些性能较差但是比较优雅的方法
下面这些方法,虽然性能差,但也比items方法好多了。并且支持优先级。
{k: v for d in dicts for k, v in d.items()}
python2.6中可以这样
dict((k, v) for d in dicts for k, v in d.items())
itertools.chain 将以正确的顺序将键值对上的迭代器链接:
import itertools
z = dict(itertools.chain(x.iteritems(), y.iteritems()))
性能测试
以下是在Ubuntu 14.04上完成的,在Python 2.7(系统Python)中:
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.5726828575134277
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.163769006729126
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.iteritems(),y.iteritems()))))
1.1614501476287842
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
2.2345519065856934
在python3.5中
>>> min(timeit.repeat(lambda: {**x, **y}))
0.4094954460160807
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.7881555100320838
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.4525277839857154
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.items(), y.items()))))
2.3143140770262107
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
3.2069112799945287
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13