
托夫勒才是这个世界上说出“大数据”这个词汇的第一人
上星期,世界著名未来学专家、著名的《第三次浪潮》作者托夫勒先生离开了他曾经预言过的这个世界。几天来,对他的辞世,国内媒体不仅广泛报道,而且刊发诸多评论和特写,详述他的预言、他的著作对我们今天生活的意义和影响。有评论称,“托夫勒走了,世界依然活在他的预言里”。
确实,托夫勒的未来三部曲《未来的冲击》、《第三次浪潮》、《权力的转移》不仅影响巨大,而且脍炙人口。特别是《第三次浪潮》,更几乎成为一本家喻户晓的经典之作。而未来学之所以可以成为一门科学,预言之所以既不同于预测、也不同于寓言和童话,就在于其可以基于对规律和科学的认识,准确地判断出未来的大事件和大趋势。
人们注意到的是,托夫勒预言,对整个人类而言,所谓第三次浪潮,就是在农业文明、工业文明之后的信息社会。但人们或许没有给予特别关注的是,托夫勒在《第三次浪潮》中,将大数据盛赞为“第三次浪潮的华彩乐章”。现在,很多研究者把大数据概念的提出,或归结为麦肯锡报告,或归结为IBM公司,其实,托夫勒才是这个世界上说出“大数据”这个词汇的第一人。
在托夫勒提出“大数据”这个词汇三十年之后,伴随着互联网的高度普及和信息化技术的极大发展,大数据迎风扑面、滚滚而来。对英文“Big Data”这个词汇,虽然没有统一公认的定义,但从脍炙人口的《第三次浪潮》,到颇具影响力的麦肯锡报告;从SGI公司的首席科学家,到高德纳公司的分析师;从达沃斯论坛的《大数据大影响》,到OECD统计委员会会议的《使用大数据做决策》;从涂子沛先生的《大数据》,到舍恩伯格先生的《大数据时代》,各方表述各有侧重,但实质大同小异,一是体量大;二是电子化产生;三是数据与技术的集成。
时至今日,托夫勒走了,大数据来了。你用还是不用,大数据就在那里,不是不多不少,而是越来越多。银行系统有海量的储户个人信息及存储信息,商场超市乃至互联网平台上有海量的商品信息及其价格信息;机场、火车站记录着许多乘客的出行情况,医院记录着许多病人的检查和治疗情况;门户网站每一条新闻下面的留言,汇集成对许多现象和问题的民意;微博微信中的喜怒哀乐,都是情感和态度的表达;百度、谷歌引擎的每一次使用,都可以说明IP那端键盘操作者到底想要什么;透过大气层中弥漫着的无数手机短信、微信,足以掌握无数手机使用者“打死也不说”的秘密。从我们不变的属性到可变的态度,都已经在一不留神之间,汇入了浩瀚的大数据洪流之中。大数据正在改变着我们的生活,而我们每个人也正因为自己生活方式的改变,而成为大数据浪潮中的一朵朵浪花。
大约一个多月前,中国国务院总理李克强在贵阳出席中国大数据产业峰会暨中国电子商务创新发展峰会时指出,大数据等新一代互联网技术深刻改变了世界,也让各国站在科技革命的同一起跑线上。中国曾屡次与世界科技革命失之交臂,今天要把握这一历史机遇,抢占先机,赢得未来。
诚如斯言。托夫勒走了,大数据来了。近代历次技术革命,中国都跟在别人身后,慢一步享受他人的研究成果和发明创造。大数据时代来了,大家的起点都一样。谁把握机遇,谁占得先机,谁就会赢得主动,就会率先创造和享用大数据的成果。
大数据来了,世界都在行动。早在2012年3月,美国奥巴马政府就颁布了《大数据的研究和发展计划》。世界其他国家也制定了相应的战略和规划,英国发布了《英国数据能力发展战略规划》;日本发布了《创建最尖端IT国家宣言》;韩国提出了“大数据中心战略”;新加坡政府则早在若干年前,就已经要求所有商业企业向政府统计部门提供电子交易记录,依据大数据进行价格及相关专业统计。我国政府也于2015年8月19日通过了《关于促进大数据发展的行动纲要》。各国都在行动,中国也不能落后。
要尽快完善法律。既要要求各级政府部门和大数据企业开放并提供数据,实现信息共享,也要有效保护国家秘密和个人隐私,还要对诸多利用大数据进行造假的行为进行防范和打击,以保证大数据的真实准确;要尽快明确分工。我们的政府机构是强大的,但需要有人牵头、有人组织、有人协调,合理分工,有效协作,防止扯皮,提高整体效率和各自的效能。
要尽快制定标准。要以现行标准为基础,充分考虑大数据的特点,统一研究并制定大数据代码标准、分类标准、统计标准、技术标准,以在不同大数据之间进行转换,切实提高其使用及分析价值。
托夫勒走了,大数据来了。即使我们不能像预言家那样远见卓识,至少我们不应该醒来太慢。因为在大数据时代,恰如马云所说,如果醒来太慢,就干脆不要醒来.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01