京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用Python和OpenCV库将URL转换为OpenCV格式的方法
过去几个月,有些PyImageSearch读者电邮问我:“如何获取URL指向的图片并将其转换成OpenCV格式(不用将其写入磁盘再读回)”。这篇文章我将展示一下怎么实现这个功能。
额外的,我们也会看到如何利用scikit-image从URL下载一幅图像。当然前行之路也会有一个常见的错误,它可能让你跌个跟头。
继续往下阅读,学习如何利用利用Python和OpenCV将URL转换为图像
方法1:OpenCV、NumPy、urllib
第一个方法:我们使用OpenCV、NumPy、urllib库从URL获取图像,并将其转换为图像。打开并新建一个文件,取名url_to_image.py,我们开始吧:
# import the necessary packages
import numpy as np
import urllib
import cv2
# METHOD #1: OpenCV, NumPy, and urllib
def url_to_image(url):
# download the image, convert it to a NumPy array, and then read
# it into OpenCV format
resp = urllib.urlopen(url)
image = np.asarray(bytearray(resp.read()), dtype="uint8")
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
# return the image
return image
首先要做的就是导入我们必需的包。我们将使用NumPy转换下载的字节序为NumPy数组,使用urllib来执行实际的网络请求,使用cv2来绑定OpenCV接口。
在第7行,我们定义了我们的url_to_image函数。这个函数带一个url参数,也就是我们想要下载的图像地址。
接下来,在第10行,我们使用urllib库来打开这个图像链接。11行则将这个下载下来的字节序转换为NumPy数组。
至此,NumPy数组还是一个1维数组(也就是一个长长的像素链表)。为了将其转换为2维格式,假设每个像素3个通道(意即分别为红,绿,蓝通道),在12行我们使用cv.imdecode函数。最后,在15行我们返回解码出来的图像给调用函数。
一切就绪,该到让它工作的时候了:
# initialize the list of image URLs to download
urls = [
"http://www.pyimagesearch.com/wp-content/uploads/2015/01/opencv_logo.png",
"http://www.pyimagesearch.com/wp-content/uploads/2015/01/google_logo.png",
"http://www.pyimagesearch.com/wp-content/uploads/2014/12/adrian_face_detection_sidebar.png",
]
# loop over the image URLs
for url in urls:
# download the image URL and display it
print "downloading %s" % (url)
image = url_to_image(url)
cv2.imshow("Image", image)
cv2.waitKey(0)
3-5行定义了我们将要下载和转换为OpenCV格式的图像地址列表。
第9行我们遍历这个列表,13行则调用url_to_image函数,然后在14行和15行将获取的图像显示到屏幕上。到此呢,我们就可以像正常情况下一样,使用OpenCV来操作和处理这些图像了。
眼见为实,打开终端,执行如下指令:
代码如下:
$ python url_to_image.py
如果一切顺利的话,你会看到OpenCV的logo:
图1:从URL下载OpenCV logo并转换为OpenCV格式
接下来是Google的logo:
图2:从URL下载Gooogle并转换为OpenCV格式
这里也有在我书中验证人脸检测的例子,《Practical Python and OpenCV》:
图3:转换一个URL图像为OpenCV格式
现在,我们来看另一种获取图像并转换为OpenCV格式的方法。
方法2:使用scikit-image
第二种方法假定你已经在你计算机上安装好了scikit-image库。让我们看看怎样采用scikit-image从URL获取图像并将其转换为OpenCV格式:
# METHOD #2: scikit-image
from skimage import io
# loop over the image URLs
for url in urls:
# download the image using scikit-image
print "downloading %s" % (url)
image = io.imread(url)
cv2.imshow("Incorrect", image)
cv2.imshow("Correct", cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
cv2.waitKey(0)
scikit-image库中做得很漂亮的一点是:io子库中的imread函数能够区分图像路径到底在磁盘上还是一个URL(第9行)。
尽管这样,这里有一个很严重的错误可能让你跌一个跟头!
OpenCV以BGR顺序表达一幅图像,然而scikit-image则是RGB顺序。如果你使用scikit-iamge的imread函数,而且还想在下载完成后使用OpenCV的函数,那么你要小心了。如41行所述,你需要将图像从RBG转换为BGR。
如果你没有这一步,那么你可能得到错误的结果:
图4:在用scikit-image时,需要特别注意将RGB转换为BGR。左边的图像就是不正确的RGB顺序,右边的则是将RGB转换为BGR,所以能正常显示。
看看Google的logo就更明显了
图5:顺序很重要。确保将RGB转换为BGR,否则就留下了一个很难发现的bug。
到此为止,你明白了吧!这两种方法分别使用Python、OpenCV、urllib,和scikit-image来将URL指向的图片转换为图像。
总结
本文中,我们学会了如何从URL获取图像,且使用Python和OpenCV将其转换为OpenCV格式。
第一种方法使用urllib包获取图像,使用Numpy转换为数组,最后使用OpenCV重新构建数组产生我们的图像。
第二种方式使用scikit-image中的io.imread函数。
所以,哪种更好呢?
这完全取决于你的安装。
如果你已经安装scikit-image,那么我可能就用io.imread(只是不要忘记如果要用OpenCV函数的话,要将RGB转换为BGR)。
如果你没有安装scikit-image,那么url_to_image就是手边现成的工具。具体细节参考本文开始处。
我很快会在Github上将这个函数添加到imutils库中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12