京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python+Opencv识别两张相似图片
在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。
当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。
看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现。
相关背景
要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照。风景照中,是沙漠还是海洋,人物照中,两个人是不是都是国字脸,还是瓜子脸(还是倒瓜子脸……哈哈……)。
那么从机器的角度来说也是这样的,先识别图像的特征,然后再相比。
很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。
因此,在图像识别中,颜色特征是最为常用的。(其余常用的特征还有纹理特征、形状特征和空间关系特征等)
其中又分为
直方图
颜色集
颜色矩
聚合向量
相关图
先借用一下恋花蝶的图片,
从肉眼来看,这两张图片大概也有八成是相似的了。
在Python中利用opencv中的calcHist()方法获取其直方图数据,返回的结果是一个列表,使用matplotlib,画出了这两张图的直方图数据图
如下:
是的,我们可以明显的发现,两张图片的直方图还是比较重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。
计算方法如下:
其中gi和si是分别指两条曲线的第i个点。
最后计算得出的结果就是就是其相似程度。
不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。
也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能认为这两张图片的相似的。
缓解这个弱点有一个方法就是利用Image的crop方法把图片等分,然后再分别计算其相似度,最后综合考虑。
图像指纹与汉明距离
在介绍下面其他判别相似度的方法前,先补充一些概念。第一个就是图像指纹
图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。
说到这里,就可以顺带引出汉明距离的概念了。
假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1
简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。
如何计算得到汉明距离,请看下面三种哈希算法
平均哈希法(aHash)
此算法是基于比较灰度图每个像素与平均值来实现的
一般步骤:
1.缩放图片,一般大小为8*8,64个像素值。
2.转化为灰度图
3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值,直接用numpy中的mean()计算即可。
4.比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0.
5.得到信息指纹:组合64个bit位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。
感知哈希算法(pHash)
平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法
一般步骤:
缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
转化为灰度图
计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换
缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
计算平均值:计算缩小DCT后的所有像素点的平均值。
进一步减小DCT:大于平均值记录为1,反之记录为0.
得到信息指纹:组合64个信息位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。
dHash算法
相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。
步骤:
缩小图片:收缩到9*8的大小,以便它有72的像素点
转化为灰度图
计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值
获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.
最后比对两张图片的指纹,获得汉明距离即可。
整个的代码实现如下:
# -*- coding: utf-8 -*-
#feimengjuan
# 利用python实现多种方法来实现图像识别
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 最简单的以灰度直方图作为相似比较的实现
def classify_gray_hist(image1,image2,size = (256,256)):
# 先计算直方图
# 几个参数必须用方括号括起来
# 这里直接用灰度图计算直方图,所以是使用第一个通道,
# 也可以进行通道分离后,得到多个通道的直方图
# bins 取为16
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 可以比较下直方图
plt.plot(range(256),hist1,'r')
plt.plot(range(256),hist2,'b')
plt.show()
# 计算直方图的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 计算单通道的直方图的相似值
def calculate(image1,image2):
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 计算直方图的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 通过得到每个通道的直方图来计算相似度
def classify_hist_with_split(image1,image2,size = (256,256)):
# 将图像resize后,分离为三个通道,再计算每个通道的相似值
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
sub_image1 = cv2.split(image1)
sub_image2 = cv2.split(image2)
sub_data = 0
for im1,im2 in zip(sub_image1,sub_image2):
sub_data += calculate(im1,im2)
sub_data = sub_data/3
return sub_data
# 平均哈希算法计算
def classify_aHash(image1,image2):
image1 = cv2.resize(image1,(8,8))
image2 = cv2.resize(image2,(8,8))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
hash1 = getHash(gray1)
hash2 = getHash(gray2)
return Hamming_distance(hash1,hash2)
def classify_pHash(image1,image2):
image1 = cv2.resize(image1,(32,32))
image2 = cv2.resize(image2,(32,32))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
# 将灰度图转为浮点型,再进行dct变换
dct1 = cv2.dct(np.float32(gray1))
dct2 = cv2.dct(np.float32(gray2))
# 取左上角的8*8,这些代表图片的最低频率
# 这个操作等价于c++中利用opencv实现的掩码操作
# 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分
dct1_roi = dct1[0:8,0:8]
dct2_roi = dct2[0:8,0:8]
hash1 = getHash(dct1_roi)
hash2 = getHash(dct2_roi)
return Hamming_distance(hash1,hash2)
# 输入灰度图,返回hash
def getHash(image):
avreage = np.mean(image)
hash = []
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i,j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
# 计算汉明距离
def Hamming_distance(hash1,hash2):
num = 0
for index in range(len(hash1)):
if hash1[index] != hash2[index]:
num += 1
return num
if __name__ == '__main__':
img1 = cv2.imread('10.jpg')
cv2.imshow('img1',img1)
img2 = cv2.imread('11.jpg')
cv2.imshow('img2',img2)
degree = classify_gray_hist(img1,img2)
#degree = classify_hist_with_split(img1,img2)
#degree = classify_aHash(img1,img2)
#degree = classify_pHash(img1,img2)
print degree
cv2.waitKey(0)
以上就是本文的全部内容,希望对大家学习python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27