京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的营销艺术:
只要有交易就会有营销,营销无处不在!
交易方式一直在变,从传统的线下交易,到后来的电子商务,营销的方式策略也一直在变,最为影响深远的就是4P策略。
自从有了互联网,一切都在巨变,马云说将来无电子商务,只有新零售。很多人感觉电子商务很好啊,兴起也没多长时间,怎么又会没有了呢?新零售又是什么鬼?
其实叫什么不重要,对消费者只会有好处,有一点可以肯定,就是购物会越来越方便,选择会越来越多,个性化的需求会更容易被满足,对普通消费者来说,知道这些也就够了。
商业形态在变,营销方式也在改变,但营销的目的从来就没变过,就是把我们兜里的钱变成商家的钱,让我们买买买多买,商家赚赚赚多赚,互联网时代信息量激增,信息传播渠道多样化,营销也无处不在、无孔不入,说直接点就是各种套路,防不胜防啊;说好听点,就是营销的艺术,有情怀有故事。
现在做营销讲求精准营销,而精准的背后是大数据支撑,我们就说说大数据时代的营销。
经验和直觉不再那么靠谱
所有的营销都要从认识市场、认识消费者开始,营销都需要牛逼的人来决策和领导,而对这些营销牛人来说,经验和直觉缺一不可,加上各种套路和资源,圈钱圈地不在话下。
而在当下,在大数据时代,经验和直觉不再那么靠谱了,因为市场变化太快,新商业生态层出不穷,营销人没有足够的时间和精力去熟悉所有的新东西,也没有和市场同步的速度。直觉等于无知,从来就是有一定的几率,在大数据时代,直觉等于无知的几率更大。
经验来不及攒,直觉又不靠谱,怎么办?
1+1 > 2
作为大数据时代的营销人,需要修炼新的“功夫”,那就是识别数据和分析数据的能力,最好是了解一定的技术原理最好。
听上去亚历山大的样子,其实不然,现在可以利用的大数据工具已经非常多,只需要学习识别利用,并学会数据分析的方法,透过数据看市场,只要学会这一招,在这个时代你已经超过至少50%的浑浑噩噩的营销人了。
工欲善其事必先利其器,在当下,尤为重要。
在企业,技术部门和销售部门最好能有一个联合办公的团队,销售人员学会数据分析,并了解一定的技术原理;技术人员,也学习一定的销售知识,了解数据背后的销售密码;如此,1+1 绝对大于 2。
要以数据为基础决定销售策略,这代表未来!
而不是为既定的销售策略找数据支撑,这代表过去!
两种完全不同的工作思路,却能将企业带入新高度或深渊。
大数据营销的未来
改变:大数据改变了太多,在各种商品交易中,消费者的主动权越来越大,个性化消费是必然趋势,卖方市场早已经变成买方市场。
不变:营销的目的依然不会变,各种套路把我们兜里的钱变成商家的钱,让我们买买买多买,商家赚赚赚多赚。
数据统计和调查过去一直就有,但只是局部数据,和大数据为基础的决策分析,是截然不同的,范围不同,格局不同。
学会用大数据分析来做营销决策的人,已经走在了时代前列,将来会超越更多的人,营销人需要跟上时代的速度。
但,这根本不是终点,一切刚刚开始,智能时代的大幕已经揭开,大数据营销的未来必然是智能营销,机器和数据不能完全代替人的工作,但绝对可以代替绝大部分工作,想在未来占领营销高地,就从学习大数据营销开始吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27