京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python 多线程Threading初学教程
1.1 什么是多线程 Threading
多线程可简单理解为同时执行多个任务。
多进程和多线程都可以执行多个任务,线程是进程的一部分。线程的特点是线程之间可以共享内存和变量,资源消耗少(不过在Unix环境中,多进程和多线程资源调度消耗差距不明显,Unix调度较快),缺点是线程之间的同步和加锁比较麻烦。
1.2 添加线程 Thread
导入模块
import threading
获取已激活的线程数
threading.active_count()
查看所有线程信息
threading.enumerate()
查看现在正在运行的线程
threading.current_thread()
添加线程,threading.Thread()接收参数target代表这个线程要完成的任务,需自行定义
def thread_job():
print('This is a thread of %s' % threading.current_thread())
def main():
thread = threading.Thread(target=thread_job,) # 定义线程
thread.start() # 让线程开始工作
if __name__ == '__main__':
main()
1.3 join 功能
因为线程是同时进行的,使用join功能可让线程完成后再进行下一步操作,即阻塞调用线程,直到队列中的所有任务被处理掉。
import threading
import time
def thread_job():
print('T1 start\n')
for i in range(10):
time.sleep(0.1)
print('T1 finish\n')
def T2_job():
print('T2 start\n')
print('T2 finish\n')
def main():
added_thread=threading.Thread(target=thread_job,name='T1')
thread2=threading.Thread(target=T2_job,name='T2')
added_thread.start()
#added_thread.join()
thread2.start()
#thread2.join()
print('all done\n')
if __name__=='__main__':
main()
例子如上所示,当不使用join功能的时候,结果如下图所示:
当执行了join功能之后,T1运行完之后才运行T2,之后再运行print(‘all done')
1.4 储存进程结果 queue
queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递
(1)基本FIFO队列
class queue.Queue(maxsize=0)
maxsize是整数,表明队列中能存放的数据个数的上限,达到上限时,插入会导致阻塞,直至队列中的数据被消费掉,如果maxsize小于或者等于0,队列大小没有限制
(2)LIFO队列 last in first out后进先出
class queue.LifoQueue(maxsize=0)
(3)优先级队列
class queue.PriorityQueue(maxsize=0)
视频中的代码,看的还不是特别明白
import threading
import time
from queue import Queue
def job(l,q):
for i in range(len(l)):
l[i]=l[i]**2
q.put(l)
def multithreading():
q=Queue()
threads=[]
data=[[1,2,3],[3,4,5],[4,5,6],[5,6,7]]
for i in range(4):
t=threading.Thread(target=job,args=(data[i],q))
t.start()
threads.append(t)
for thread in threads:
thread.join()
results=[]
for _ in range(4):
results.append(q.get())
print(results)
if __name__=='__main__':
multithreading()
运行结果如下所示
1.5 GIL 不一定有效率
Global Interpreter Lock全局解释器锁,python的执行由python虚拟机(也成解释器主循环)控制,GIL的控制对python虚拟机的访问,保证在任意时刻,只有一个线程在解释器中运行。在多线程环境中能,python虚拟机按照以下方式执行:
1.设置 GIL
2.切换到一个线程去运行
3.运行:
a.指定数量的字节码指令,或
b.线程主动让出控制(可以调用time.sleep(0))
4.把线程设置为睡眠状态
5.解锁GIL
6.重复1-5
在调用外部代码(如C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有python的字节码被运行,所以不会做线程切换)。
下面为视频中所举例的代码,将一个数扩大4倍,分为正常方式、以及分配给4个线程去做,发现耗时其实并没有相差太多量级。
import threading
from queue import Queue
import copy
import time
def job(l, q):
res = sum(l)
q.put(res)
def multithreading(l):
q = Queue()
threads = []
for i in range(4):
t = threading.Thread(target=job, args=(copy.copy(l), q), name='T%i' % i)
t.start()
threads.append(t)
[t.join() for t in threads]
total = 0
for _ in range(4):
total += q.get()
print(total)
def normal(l):
total = sum(l)
print(total)
if __name__ == '__main__':
l = list(range(1000000))
s_t = time.time()
normal(l*4)
print('normal: ',time.time()-s_t)
s_t = time.time()
multithreading(l)
print('multithreading: ', time.time()-s_t)
运行结果为:

1.6 线程锁 Lock
如果线程1得到了结果,想要让线程2继续使用1的结果进行处理,则需要对1lock,等到1执行完,再开始执行线程2。一般来说对share memory即对共享内存进行加工处理时会用到lock。
import threading
def job1():
global A, lock #全局变量
lock.acquire() #开始lock
for i in range(10):
A += 1
print('job1', A)
lock.release() #释放
def job2():
global A, lock
lock.acquire()
for i in range(10):
A += 10
print('job2', A)
lock.release()
if __name__ == '__main__':
lock = threading.Lock()
A = 0
t1 = threading.Thread(target=job1)
t2 = threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
运行结果如下所示:
总结
以上所述是小编给大家介绍的Python 多线程Threading初学教程,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12