京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python处理csv数据的方法
本文实例讲述了python处理csv数据的方法。分享给大家供大家参考。具体如下:
Python代码:
代码如下:
#coding=utf-8
__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
rootdir='/nethome/dehua.li/orderlifeCycleData/xingzheng'
writeFileDir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
heyueFile="/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv"
ms_acked="1"
msg=[]
ex=[]
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime("2014-11-04 20:59:59","%Y-%m-%d %H:%M:%S")))
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileNameWrite=os.path.join(writeFileDir,filename)
print fileNameWrite
csvfile00=open(fileNameWrite,'wb')
writer1=csv.writer(csvfile00)
writer1.writerow(['FeedCode','OrderId','Status','LocalTime','Time','Exchange'])
fileName=os.path.join(parent,filename)
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
#filenamePart11_filenamePart12_filenamePart13.filenamePart2:dongzheng_orderlifeCycleData_20150111.csv
print fileName
with open(fileName,'rb') as csvfile:
reader=csv.reader(csvfile)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[3]=='TPO':
#print " filter TPO "
continue
if item[12]=='Sent':
[tm_local,ms_local]=string.split(item[15],'.')
[tm_localup,ms_localup]=string.split(item[19],'.')
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local,"%Y-%m-%d %H:%M:%S")))
LocalUpdate=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_localup,"%Y-%m-%d %H:%M:%S")))
tm=int(((LocalTime-LocalUpdate).seconds))*1000
ms_sent=str(int(ms_local)-int(ms_localup)+tm)
if int(ms_sent)>10*60*1000:
print "ms_sent>600000"
continue
if(int(ms_local)-int(ms_localup)+tm)<0:
print 'wrong1'
msg=[]
msg.append(item[0])
msg.append(item[1])
msg.append(item[12])
msg.append(item[15])
msg.append(ms_sent)
with open(heyueFile,'rb') as csvfile1:
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
ex=Item[3]
break
csvfile1.close()
with open(fileName,'rb') as csvfile22:
reader=csv.reader(csvfile22)
CsvItem2=[row for row in reader]
for item_ in CsvItem2:
if item_[12]=='Acked' and item_[1]==item[1]:
[tm_local2,ms_local2]=string.split(item_[15],'.')
LocalTime2=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local2,"%Y-%m-%d %H:%M:%S")))
tm2=int(((LocalTime2-LocalTime).seconds))*1000
ms_acked=str(int(ms_local2)-int(ms_local)+tm2)
if int(ms_acked)>10*60*1000:
print "MSacked>600000"
continue
msg=[]
msg.append(item_[0])
msg.append(item_[1])
msg.append(item_[12])
msg.append(item_[15])
msg.append(ms_acked)
with open(heyueFile,'rb') as csvfile111:
reader=csv.reader(csvfile111)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
break
#print "write ok"
csvfile22.close()
csvfile.close()
csvfile00.close()
代码如下:
#coding=utf-8
#__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
def median(lst):
even = (0 if len(lst) % 2 else 1) + 1
half = (len(lst) - 1) / 2
return sum(sorted(lst)[half:half + even]) / float(even)
def mean(lst):
if len(lst)==0:
return 0
return sum(lst)/len(lst)
nightLine="21:01:00"
morningLine="09:01:00"
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
def afterOneMin(time):
[tm_local,ms_local]=string.split(time,'.')
[ymd,hms]=string.split(tm_local,' ')
flag=0
if hms>"21:01:00":
flag=1
elif hms>"09:01:00" and hms<"20:00:00":
flag=1
elif hms>"00:00:00" and hms<"05:00:00":
flag=1
return flag
rootdir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
#csvfileMaxMin = open('e:\dehua.li\csv\__xingzhenMaxMin.csv','wb')
#writer1 = csv.writer(csvfileMaxMin)
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMaxLocalTime','SentMinTime','SentMinLocalTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMaxLocalTime','AckedMinTime','AckedMinLocalTime','AckedMeanTime','AckedMedianTime','Exchange'])
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMinTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMinTime','AckedMeanTime','AckedMedianTime','Exchange'])
msg=[]
codeList=list()
orderList=list()
itemSentList=[]
itemAckedList=[]
feedCode=[]
exchange=[]
zhengshangSentMedian=0
zhengshangSentMean=0
zhengshangAckedMedian=0
zhengshangAckedMean=0
dashangSentMedian=0
dashangSentMean=0
dashangAckedMedian=0
dashangAckedMean=0
shangqiSentMedian=0
shangqiSentMean=0
shangqiAckedMedian=0
shangqiAckedMean=0
zhongjinSentMedian=0
zhongjinSentMean=0
zhongjinAckedMedian=0
zhongjinAckedMean=0
zhengshangSent=[]
zhengshangAcked=[]
dashangSent=[]
dashangAcked=[]
shangqiSent=[]
shangqiAcked=[]
zhongjinSent=[]
zhongjinAcked=[]
zhengshangSentMedianAll=[]
zhengshangSentMeanAll=[]
zhengshangAckedMedianAll=[]
zhengshangAckedMeanAll=[]
dashangSentMedianAll=[]
dashangSentMeanAll=[]
dashangAckedMedianAll=[]
dashangAckedMeanAll=[]
shangqiSentMedianAll=[]
shangqiSentMeanAll=[]
shangqiAckedMedianAll=[]
shangqiAckedMeanAll=[]
zhongjinSentMedianAll=[]
zhongjinSentMeanAll=[]
zhongjinAckedMedianAll=[]
zhongjinAckedMeanAll=[]
zhengshang='0'
dashang='0'
shangqi='0'
zhongjin='0'
with open('/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv','rb') as csvfile:
reader=csv.reader(csvfile)
csvItem=[row for row in reader]
zhengshang=csvItem[300][3]
dashang=csvItem[5][3]
shangqi=csvItem[165][3]
zhongjin=csvItem[435][3]
#for item in csvItem:
# if item[3]==zhengshang:
# print item
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileName=os.path.join(rootdir,filename)
csvfile1=open(fileName,'rb')
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[0]=='FeedCode':
continue
if item[0] not in codeList:
codeList.append(item[0])
#print CsvItem[15]
if len(item)<=5:
print fileName
print item
print '++++++++++++++++++++++++++++++'
#if afterOneMin(item[3])==0:
# print item[3]
# continue
if item[5]==zhengshang and item[2]=='Sent':
zhengshangSent.append(int(item[4]))
elif item[5]==zhengshang and item[2]=='Acked':
zhengshangAcked.append(int(item[4]))
elif item[5]==dashang and item[2]=='Sent':
dashangSent.append(int(item[4]))
elif item[5]==dashang and item[2]=='Acked':
dashangAcked.append(int(item[4]))
elif item[5]==shangqi and item[2]=='Sent':
shangqiSent.append(int(item[4]))
if int(item[4])>=600000:
print "------------"
print item
elif item[5]==shangqi and item[2]=='Acked':
shangqiAcked.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Sent':
zhongjinSent.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Acked':
zhongjinAcked.append(int(item[4]))
else:
print "wrong info"
print item
if mean(shangqiSent)>420000:
print sum(shangqiSent)
print len(shangqiSent)
print item
print fileName
print shangqiSent
zhengshangSentMedian=median(zhengshangSent)
zhengshangSentMean=mean(zhengshangSent)
zhengshangAckedMedian=median(zhengshangAcked)
zhengshangAckedMean=mean(zhengshangAcked)
dashangSentMedian=median(dashangSent)
dashangSentMean=mean(dashangSent)
dashangAckedMedian=median(dashangAcked)
dashangAckedMean=mean(dashangAcked)
shangqiSentMedian=median(shangqiSent)
shangqiSentMean=mean(shangqiSent)
shangqiAckedMedian=median(shangqiAcked)
shangqiAckedMean=mean(shangqiAcked)
zhongjinSentMedian=median(zhongjinSent)
zhongjinSentMean=mean(zhongjinSent)
zhongjinAckedMedian=median(zhongjinAcked)
zhongjinAckedMean=mean(zhongjinAcked)
#if mean(shangqiSent)>70:
# print '================================'
# print fileName
#print codeList
'''
for listItem in codeList:
itemSentList=[]
itemAckedList=[]
for item in CsvItem:
if item[0]==listItem and item[2]=='Sent':
itemSentList.append(int(item[4]))
exchange=item[5]
elif item[0]==listItem and item[2]=='Acked':
itemAckedList.append(int(item[4]))
#print itemSentList
itemMaxSent=max(itemSentList)
itemMinSent=min(itemSentList)
itemAvgSent=sum(itemSentList)/len(itemSentList)
itemMaxAcked=max(itemAckedList)
itemMinAcked=min(itemAckedList)
itemAvgAcked=sum(itemAckedList)/len(itemAckedList)
SentMedian=median(itemSentList)
AckedMedian=median(itemAckedList)
msg=[]
msg.append(listItem) #0
msg.append("2015/01/14") #1
msg.append(itemMaxSent) #2
msg.append(itemMinSent) #3
msg.append(itemAvgSent) #4
msg.append(SentMedian) #5
msg.append(itemMaxAcked) #6
msg.append(itemMinAcked) #7
msg.append(itemAvgAcked) #8
msg.append(AckedMedian) #9
msg.append(exchange) #10
if len(msg)>15:
print "------------------------------"
print msg
writer1.writerow(msg)
'''
zhengshangSentMedianAll.append(zhengshangSentMedian)
zhengshangSentMeanAll.append(zhengshangSentMean)
zhengshangAckedMedianAll.append(zhengshangAckedMedian)
zhengshangAckedMeanAll.append(zhengshangAckedMean)
dashangSentMedianAll.append(dashangSentMedian)
dashangSentMeanAll.append(dashangSentMean)
dashangAckedMedianAll.append(dashangAckedMedian)
dashangAckedMeanAll.append(dashangAckedMean)
shangqiSentMedianAll.append(shangqiSentMedian)
shangqiSentMeanAll.append(shangqiSentMean)
shangqiAckedMedianAll.append(shangqiAckedMedian)
shangqiAckedMeanAll.append(shangqiAckedMean)
zhongjinSentMedianAll.append(zhongjinSentMedian)
zhongjinSentMeanAll.append(zhongjinSentMean)
zhongjinAckedMedianAll.append(zhongjinAckedMedian)
zhongjinAckedMeanAll.append(zhongjinAckedMean)
plt.figure(1)
plt.figure(2)
plt.figure(3)
plt.figure(4)
plt.figure(1)
plt.title('SentMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMeanAll)+1),zhengshangSentMeanAll,'r')
plt.plot(range(1,len(dashangSentMeanAll)+1),dashangSentMeanAll,'b')
plt.plot(range(1,len(shangqiSentMeanAll)+1),shangqiSentMeanAll,'g')
plt.plot(range(1,len(zhongjinSentMeanAll)+1),zhongjinSentMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMean.png')
plt.figure(2)
plt.title('SentMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMedianAll)+1),zhengshangSentMedianAll,'r')
plt.plot(range(1,len(dashangSentMedianAll)+1),dashangSentMedianAll,'b')
plt.plot(range(1,len(shangqiSentMedianAll)+1),shangqiSentMedianAll,'g')
plt.plot(range(1,len(zhongjinSentMedianAll)+1),zhongjinSentMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMedian.png')
plt.figure(3)
plt.title('AckedMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMeanAll)+1),zhengshangAckedMeanAll,'r')
plt.plot(range(1,len(dashangAckedMeanAll)+1),dashangAckedMeanAll,'b')
plt.plot(range(1,len(shangqiAckedMeanAll)+1),shangqiAckedMeanAll,'g')
plt.plot(range(1,len(zhongjinAckedMeanAll)+1),zhongjinAckedMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMean.png')
plt.figure(4)
plt.title('AckedMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMedianAll)+1),zhengshangAckedMedianAll,'r')
plt.plot(range(1,len(dashangAckedMedianAll)+1),dashangAckedMedianAll,'b')
plt.plot(range(1,len(shangqiAckedMedianAll)+1),shangqiAckedMedianAll,'g')
plt.plot(range(1,len(zhongjinAckedMedianAll)+1),zhongjinAckedMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMedian.png')
plt.show()
print 'over'
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27