
python处理csv数据的方法
本文实例讲述了python处理csv数据的方法。分享给大家供大家参考。具体如下:
Python代码:
代码如下:
#coding=utf-8
__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
rootdir='/nethome/dehua.li/orderlifeCycleData/xingzheng'
writeFileDir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
heyueFile="/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv"
ms_acked="1"
msg=[]
ex=[]
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime("2014-11-04 20:59:59","%Y-%m-%d %H:%M:%S")))
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileNameWrite=os.path.join(writeFileDir,filename)
print fileNameWrite
csvfile00=open(fileNameWrite,'wb')
writer1=csv.writer(csvfile00)
writer1.writerow(['FeedCode','OrderId','Status','LocalTime','Time','Exchange'])
fileName=os.path.join(parent,filename)
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
#filenamePart11_filenamePart12_filenamePart13.filenamePart2:dongzheng_orderlifeCycleData_20150111.csv
print fileName
with open(fileName,'rb') as csvfile:
reader=csv.reader(csvfile)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[3]=='TPO':
#print " filter TPO "
continue
if item[12]=='Sent':
[tm_local,ms_local]=string.split(item[15],'.')
[tm_localup,ms_localup]=string.split(item[19],'.')
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local,"%Y-%m-%d %H:%M:%S")))
LocalUpdate=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_localup,"%Y-%m-%d %H:%M:%S")))
tm=int(((LocalTime-LocalUpdate).seconds))*1000
ms_sent=str(int(ms_local)-int(ms_localup)+tm)
if int(ms_sent)>10*60*1000:
print "ms_sent>600000"
continue
if(int(ms_local)-int(ms_localup)+tm)<0:
print 'wrong1'
msg=[]
msg.append(item[0])
msg.append(item[1])
msg.append(item[12])
msg.append(item[15])
msg.append(ms_sent)
with open(heyueFile,'rb') as csvfile1:
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
ex=Item[3]
break
csvfile1.close()
with open(fileName,'rb') as csvfile22:
reader=csv.reader(csvfile22)
CsvItem2=[row for row in reader]
for item_ in CsvItem2:
if item_[12]=='Acked' and item_[1]==item[1]:
[tm_local2,ms_local2]=string.split(item_[15],'.')
LocalTime2=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local2,"%Y-%m-%d %H:%M:%S")))
tm2=int(((LocalTime2-LocalTime).seconds))*1000
ms_acked=str(int(ms_local2)-int(ms_local)+tm2)
if int(ms_acked)>10*60*1000:
print "MSacked>600000"
continue
msg=[]
msg.append(item_[0])
msg.append(item_[1])
msg.append(item_[12])
msg.append(item_[15])
msg.append(ms_acked)
with open(heyueFile,'rb') as csvfile111:
reader=csv.reader(csvfile111)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
break
#print "write ok"
csvfile22.close()
csvfile.close()
csvfile00.close()
代码如下:
#coding=utf-8
#__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
def median(lst):
even = (0 if len(lst) % 2 else 1) + 1
half = (len(lst) - 1) / 2
return sum(sorted(lst)[half:half + even]) / float(even)
def mean(lst):
if len(lst)==0:
return 0
return sum(lst)/len(lst)
nightLine="21:01:00"
morningLine="09:01:00"
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
def afterOneMin(time):
[tm_local,ms_local]=string.split(time,'.')
[ymd,hms]=string.split(tm_local,' ')
flag=0
if hms>"21:01:00":
flag=1
elif hms>"09:01:00" and hms<"20:00:00":
flag=1
elif hms>"00:00:00" and hms<"05:00:00":
flag=1
return flag
rootdir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
#csvfileMaxMin = open('e:\dehua.li\csv\__xingzhenMaxMin.csv','wb')
#writer1 = csv.writer(csvfileMaxMin)
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMaxLocalTime','SentMinTime','SentMinLocalTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMaxLocalTime','AckedMinTime','AckedMinLocalTime','AckedMeanTime','AckedMedianTime','Exchange'])
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMinTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMinTime','AckedMeanTime','AckedMedianTime','Exchange'])
msg=[]
codeList=list()
orderList=list()
itemSentList=[]
itemAckedList=[]
feedCode=[]
exchange=[]
zhengshangSentMedian=0
zhengshangSentMean=0
zhengshangAckedMedian=0
zhengshangAckedMean=0
dashangSentMedian=0
dashangSentMean=0
dashangAckedMedian=0
dashangAckedMean=0
shangqiSentMedian=0
shangqiSentMean=0
shangqiAckedMedian=0
shangqiAckedMean=0
zhongjinSentMedian=0
zhongjinSentMean=0
zhongjinAckedMedian=0
zhongjinAckedMean=0
zhengshangSent=[]
zhengshangAcked=[]
dashangSent=[]
dashangAcked=[]
shangqiSent=[]
shangqiAcked=[]
zhongjinSent=[]
zhongjinAcked=[]
zhengshangSentMedianAll=[]
zhengshangSentMeanAll=[]
zhengshangAckedMedianAll=[]
zhengshangAckedMeanAll=[]
dashangSentMedianAll=[]
dashangSentMeanAll=[]
dashangAckedMedianAll=[]
dashangAckedMeanAll=[]
shangqiSentMedianAll=[]
shangqiSentMeanAll=[]
shangqiAckedMedianAll=[]
shangqiAckedMeanAll=[]
zhongjinSentMedianAll=[]
zhongjinSentMeanAll=[]
zhongjinAckedMedianAll=[]
zhongjinAckedMeanAll=[]
zhengshang='0'
dashang='0'
shangqi='0'
zhongjin='0'
with open('/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv','rb') as csvfile:
reader=csv.reader(csvfile)
csvItem=[row for row in reader]
zhengshang=csvItem[300][3]
dashang=csvItem[5][3]
shangqi=csvItem[165][3]
zhongjin=csvItem[435][3]
#for item in csvItem:
# if item[3]==zhengshang:
# print item
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileName=os.path.join(rootdir,filename)
csvfile1=open(fileName,'rb')
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[0]=='FeedCode':
continue
if item[0] not in codeList:
codeList.append(item[0])
#print CsvItem[15]
if len(item)<=5:
print fileName
print item
print '++++++++++++++++++++++++++++++'
#if afterOneMin(item[3])==0:
# print item[3]
# continue
if item[5]==zhengshang and item[2]=='Sent':
zhengshangSent.append(int(item[4]))
elif item[5]==zhengshang and item[2]=='Acked':
zhengshangAcked.append(int(item[4]))
elif item[5]==dashang and item[2]=='Sent':
dashangSent.append(int(item[4]))
elif item[5]==dashang and item[2]=='Acked':
dashangAcked.append(int(item[4]))
elif item[5]==shangqi and item[2]=='Sent':
shangqiSent.append(int(item[4]))
if int(item[4])>=600000:
print "------------"
print item
elif item[5]==shangqi and item[2]=='Acked':
shangqiAcked.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Sent':
zhongjinSent.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Acked':
zhongjinAcked.append(int(item[4]))
else:
print "wrong info"
print item
if mean(shangqiSent)>420000:
print sum(shangqiSent)
print len(shangqiSent)
print item
print fileName
print shangqiSent
zhengshangSentMedian=median(zhengshangSent)
zhengshangSentMean=mean(zhengshangSent)
zhengshangAckedMedian=median(zhengshangAcked)
zhengshangAckedMean=mean(zhengshangAcked)
dashangSentMedian=median(dashangSent)
dashangSentMean=mean(dashangSent)
dashangAckedMedian=median(dashangAcked)
dashangAckedMean=mean(dashangAcked)
shangqiSentMedian=median(shangqiSent)
shangqiSentMean=mean(shangqiSent)
shangqiAckedMedian=median(shangqiAcked)
shangqiAckedMean=mean(shangqiAcked)
zhongjinSentMedian=median(zhongjinSent)
zhongjinSentMean=mean(zhongjinSent)
zhongjinAckedMedian=median(zhongjinAcked)
zhongjinAckedMean=mean(zhongjinAcked)
#if mean(shangqiSent)>70:
# print '================================'
# print fileName
#print codeList
'''
for listItem in codeList:
itemSentList=[]
itemAckedList=[]
for item in CsvItem:
if item[0]==listItem and item[2]=='Sent':
itemSentList.append(int(item[4]))
exchange=item[5]
elif item[0]==listItem and item[2]=='Acked':
itemAckedList.append(int(item[4]))
#print itemSentList
itemMaxSent=max(itemSentList)
itemMinSent=min(itemSentList)
itemAvgSent=sum(itemSentList)/len(itemSentList)
itemMaxAcked=max(itemAckedList)
itemMinAcked=min(itemAckedList)
itemAvgAcked=sum(itemAckedList)/len(itemAckedList)
SentMedian=median(itemSentList)
AckedMedian=median(itemAckedList)
msg=[]
msg.append(listItem) #0
msg.append("2015/01/14") #1
msg.append(itemMaxSent) #2
msg.append(itemMinSent) #3
msg.append(itemAvgSent) #4
msg.append(SentMedian) #5
msg.append(itemMaxAcked) #6
msg.append(itemMinAcked) #7
msg.append(itemAvgAcked) #8
msg.append(AckedMedian) #9
msg.append(exchange) #10
if len(msg)>15:
print "------------------------------"
print msg
writer1.writerow(msg)
'''
zhengshangSentMedianAll.append(zhengshangSentMedian)
zhengshangSentMeanAll.append(zhengshangSentMean)
zhengshangAckedMedianAll.append(zhengshangAckedMedian)
zhengshangAckedMeanAll.append(zhengshangAckedMean)
dashangSentMedianAll.append(dashangSentMedian)
dashangSentMeanAll.append(dashangSentMean)
dashangAckedMedianAll.append(dashangAckedMedian)
dashangAckedMeanAll.append(dashangAckedMean)
shangqiSentMedianAll.append(shangqiSentMedian)
shangqiSentMeanAll.append(shangqiSentMean)
shangqiAckedMedianAll.append(shangqiAckedMedian)
shangqiAckedMeanAll.append(shangqiAckedMean)
zhongjinSentMedianAll.append(zhongjinSentMedian)
zhongjinSentMeanAll.append(zhongjinSentMean)
zhongjinAckedMedianAll.append(zhongjinAckedMedian)
zhongjinAckedMeanAll.append(zhongjinAckedMean)
plt.figure(1)
plt.figure(2)
plt.figure(3)
plt.figure(4)
plt.figure(1)
plt.title('SentMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMeanAll)+1),zhengshangSentMeanAll,'r')
plt.plot(range(1,len(dashangSentMeanAll)+1),dashangSentMeanAll,'b')
plt.plot(range(1,len(shangqiSentMeanAll)+1),shangqiSentMeanAll,'g')
plt.plot(range(1,len(zhongjinSentMeanAll)+1),zhongjinSentMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMean.png')
plt.figure(2)
plt.title('SentMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMedianAll)+1),zhengshangSentMedianAll,'r')
plt.plot(range(1,len(dashangSentMedianAll)+1),dashangSentMedianAll,'b')
plt.plot(range(1,len(shangqiSentMedianAll)+1),shangqiSentMedianAll,'g')
plt.plot(range(1,len(zhongjinSentMedianAll)+1),zhongjinSentMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMedian.png')
plt.figure(3)
plt.title('AckedMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMeanAll)+1),zhengshangAckedMeanAll,'r')
plt.plot(range(1,len(dashangAckedMeanAll)+1),dashangAckedMeanAll,'b')
plt.plot(range(1,len(shangqiAckedMeanAll)+1),shangqiAckedMeanAll,'g')
plt.plot(range(1,len(zhongjinAckedMeanAll)+1),zhongjinAckedMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMean.png')
plt.figure(4)
plt.title('AckedMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMedianAll)+1),zhengshangAckedMedianAll,'r')
plt.plot(range(1,len(dashangAckedMedianAll)+1),dashangAckedMedianAll,'b')
plt.plot(range(1,len(shangqiAckedMedianAll)+1),shangqiAckedMedianAll,'g')
plt.plot(range(1,len(zhongjinAckedMedianAll)+1),zhongjinAckedMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMedian.png')
plt.show()
print 'over'
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28