京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术支持精准扶贫模式创新
2013年11月,习近平总书记在湖南湘西考察时提出“精准扶贫”之后,政策实践者及理论研究者对精准扶贫的关注与日俱增。精准扶贫是通过精准识别、精准帮扶、精准管理和精准考核,以优化配置各类扶贫资源的扶贫模式。2014年以来,国家相继发布《建立精准扶贫工作机制实施方案》《关于打赢脱贫攻坚战的决定》和《“十三五”脱贫攻坚规划》等文件,标志着精准扶贫正式上升为国家战略。精准扶贫也由此成为扶贫工作的新模式,成为我国全面建成小康社会的战略路径。当前,扶贫工作进入攻城拔寨的关键时期,实践中依然存在一些问题,亟须破解。
扶贫数据缺乏前瞻性
一是扶贫对象可能被“漏统”或“错置”。由于贫困对象的贫困表现及其致贫原因具有多维性和个性化等特点,且现有的低收入农户、低保和助学等数据库未能实现互联和整合,因此,扶贫管理人员难以确认采集数据的真实性,可能导致一些扶贫对象被“漏统”或“错置”。
二是帮扶政策措施的供需匹配不足。脱贫难和返贫快等难题不能简单归结为政策供给不足。扶贫政策设计与实施时,未能通过多源数据充分解析多维状态的贫困表现及致贫原因,使得不少地区的帮扶政策供给难以真正匹配扶贫对象的真实需求,导致帮扶政策不到位、扶贫资源浪费及帮扶效果不佳等问题。
三是扶贫管理的动态预警机制不健全。扶贫管理的核心在于,使帮扶对象有进有退以及帮扶政策及时跟进。但一些地区的扶贫管理部门未能对扶贫数据进行前瞻性跟踪与动态预警,由此造成了已脱贫对象未能及时退出帮扶名单而继续享受扶贫政策等问题。
定制造血式帮扶政策措施
大数据技术具有从大规模数据中高速收集、分析、建模与解读以发现管理决策价值的技术优势。精准扶贫可以此为技术支撑,以扶贫问题为导向,破解扶贫工作实践中的难题。
第一,通过多源大数据的分析比对,及时而精准地识别出“真贫”。精准识别是精准扶贫的前提,可利用大数据技术,将收集的扶贫对象数据进行萃取、整合、建档立卡并录入扶贫信息系统。在此基础上,将民政、财政、地税、残联、社保、工商和房产等部门数据,与外部多源大数据进行分析、比对、建模,从而及时精准地识别出真正的扶贫对象。
第二,通过大数据支持帮扶供需匹配,实施造血式精准施策。精准帮扶是通过解析多维状态的贫困表现及致贫原因,实施与帮扶需求相匹配的针对性政策措施。大数据技术有助于决策者从扶贫大数据中,挖掘出隐含致贫原因和“真贫”需求。以此为基础,构建扶贫政策的供求匹配模型,为贫困对象定制造血式帮扶政策措施,“因人因地施策,因贫困原因施策,因贫困类型施策”。
第三,通过追踪大数据的变化趋势,实现对扶贫工作的动态预警与精准管理。精准管理是通过跟踪扶贫政策执行、项目实施与资金使用等方面的动态数据,以保障扶贫政策精准到位和扶贫资金有效使用的一种扶贫管理模式。大数据技术有助于提高数据加工能力和效率,管理部门可以动态实时地跟踪扶贫大数据,据此进行追踪预警与决策优化,从而保障扶贫政策措施的效率与效益。
第四,通过整合分析多源与多主体的大数据,提升对扶贫工作的精准考核水平。精准考核是对扶贫工作进行全过程量化考核的一种扶贫考核模式。可以在扶贫信息管理系统中嵌入一套扶贫考核指标体系和数字化考核系统,并利用大数据技术对相关数据进行萃取整理与分析建模。在此基础上,管理部门对扶贫工作实施全过程数字化考核,对考核结果数据实施动态监控,从而保障各项帮扶政策实施及其扶贫管理责任的精准到位。
搭建适应移动终端的数据平台
现有的扶贫信息管理系统虽已具备数据收集整合、存储查询和分析比对等部分功能,但仍处于大数据技术运用的初级阶段。为更充分利用并发挥大数据技术的功能优势,建议优化大数据精准扶贫模式,实现以精准识别、精准帮扶、精准管理和精准考核为内容的精准扶贫模式。
首先,构建精准扶贫大数据技术平台。建议加快推进精准扶贫大数据平台建设与完善,开发出适应移动终端的精准扶贫大数据平台。借此对收集到的多源扶贫大数据进行萃取、整合、分析、建模与解读,从而精准地识别出“真贫”。同时,瞄准“真贫”需求精准施策,对扶贫政策效果进行全过程的数字化考核与动态预警。
其次,建立瞄准“真贫”需求的动态预警机制。面向“真贫”对象的帮扶诉求,借助大数据技术跟踪贫困对象相关数据,前瞻性地预警贫困趋势、脱贫潜力和返贫问题,动态而及时地精准瞄准“真贫”、精准施策及评估扶贫工作成效,保障“真贫”对象能及时脱贫,确保小康路上一个都不掉队。
最后,协调推进大数据技术创新与扶贫机制创新。大数据技术功能的实现有赖于最佳的精准扶贫机制创新实践,只有技术创新与机制创新联动协调,才能创造出新的“政策红利”和“技术红利”,才能使扶贫对象分享到技术创新与机制创新的净利益增量。扶贫管理部门应协调推进大数据技术创新与精准扶贫机制创新,从而使线下的最佳扶贫工作实践与线上的大数据平台功能优势相得益彰,使大数据技术真正有效地助力精准扶贫模式创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30