
大数据的机遇与挑战
作为一个数据科学家,我认为:第一,政府和企业只要扎扎实实打好基础,就能从大数据技术上获益。第二,大数据技术目前是一个正在从应用中逐渐走向成熟的技术,挑战仍然很多。
大数据是很多工作的基本“标配”
什么是大数据?什么是数据?什么是资料?资料就是生产过程、管理过程,乃至经济、社会、生活过程的记忆。那些记忆可能表现在一个文件、一段演讲、一段文字等等。资料放在计算机上就叫数据。真正的大数据是指大而复杂的资料集,这些复杂性包括了海量性、时变性、异构性、分布性等,是我们从互联网的数据能够观察到的特征。只要数据量超过临界量,就叫大数据,反之则不叫大数据。因而讲大数据涉及两个概念:第一,大和小是相对概念;第二,相对的特定问题而言,不同的决策问题要求的数据不一样。
有人认为现在是大数据时代,大数据可以解释任何事情,其实是不正确的。当然,不重视大数据同样不正确。现在都说大数据是基本的生产资料,大数据是基本的生产力,因而才说大数据是经济社会的基本生产资源。大数据离不开互联网,近几年互联网的发展走向是从复杂的信息传递到消费互联,再到生产互联,也就是物联网,再到智慧互联。在这个走向中信息技术向互联网产生以后,要与其他任何领域深度整合,这就是今天谈论信息工业化、谈论大数据的主要原因。
目前新技术很多,真正产生效益和作用的是所有技术的综合运用。所有技术是互补的,都是从不同的层面讲问题。互联网和云计算是基础设施,物联网讲的是交互方式,人工智能讲的是应用模式。大数据讲的是信息技术,是人和人、人和机器、机器和机器交互的内容特征。大数据是最底层的信息技术,是基本标配。
大数据可以带来超凡价值
对于大数据如何去运用,我想说五句话。
第一,明确目标是前提。这是推出大数据产业最重要的一步。只有真正解决每个地区、每个政府、每个企业不同的问题,大数据才有用。
第二,拥有数据是基础。大数据产业就是以现代技术设施为基础,以数据为生产要素,以数据的价值挖掘为创新活动的产业叫大数据产业。因此,没有数据就谈不上大数据产业。
第三,计算平台是支撑。换句话说,没有一定的计算架构和计算平台,计算不了。它是支撑作用,但做企业的人不必过分强化,也不必过分低估。
第四,分析技术是核心。这是当今较少提到的一个主题。我非常担心在整个大数据的链条中,有些链条做得过分粗壮,有的链条过分纤弱,也就是产业链布局不均衡。如果过分膨胀,将会产生新的产能过剩。
第五,产生效益是根本。数据是基础,平台是支撑,技术是核心,盈利是王道。
为什么大数据可以带来超凡价值?有三条原理:第一,量变到质变的原理。大数据之所以有用,是因为数据积攒到了可以质变,通过数据就可以知道背后的故事。第二,分析出价值原理。如果存储不分析,无疑是只买米不做饭,产生不了实际效益。所以,要分析,要挖掘。第三,跨界关联原理。
这个过程中有很多观念要改变:第一,数据是资产;第二,用户是资源;第三,服务即感知。大数据突飞猛进地发展,能够解决相当多的问题,但千万不要以为大数据技术已经成熟了。挑战仍然存在,主要是分析基础被破坏,计算技术待革新,真伪判定需要重建,对新技术的盲目所引起的盲从。总体来说,虽然挑战很多,但是仍需集中力量攻克,大数据的发展才能有大的突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28