
互联网时代教育新需求:开展大数据应用
教育质量提高的本质是要更加丰富地满足人们多层次、个性化和持续变化的教育需求。这些教育需求并不是抽象的,也不是一些不可捉摸的概念,而是日益清晰地表现为可以数据化的教育偏好、教育选择、教育行为及其调查结果。在互联网时代,正在大量涌现的与学校教育质量相关的素材,经过处理后加总起来就表现为有关教育质量的数据,这些数据的海量化加之以恰当的处理方式,使之具有更强的洞察发现力、流程优化力和决策力,就成为了我们提高教育质量可资利用的大数据。因而,要实现教育质量提高,从根本上就是要获取尽可能多的反映人们教育需求的大数据。拥有的实时或长时的大数据越多,就越能够在学校教育质量效能上快速地、准确地和多样化地满足受教育者需求。
教育过程的复杂性、教育质量的滞后性等特征的存在,使教育质量提高的主体责任划分不明确。大数据技术可以对学校教育过程的各个环节及时收集分析数据,进行记录和监测。如2012年10月美国教育部在其发布的《通过教育数据挖掘和学习分析促进教与学》报告中提出,“目前教育领域中大数据的应用主要有教育数据挖掘和学习分析两大方向”。也就是说,依据大数据技术能在学生的学习与需求、教学决策与教育管理等方面发挥预测作用,教师、校长等在其间的作为既有了依据也有了责任,使教育质量提高有了大数据基础。
在互联网时代,数据成为了我们学校教育的核心资源,当学生及其家长、师资队伍、课程与教学、学校领导和教育管理这些传统要素,需要依托数据资源进行优化配置时,大数据技术将成为决定教育质量提高的关键性因素。教育质量提高离不开课程与教学的改进,只有它们的不断升级和内容更新才能带来教育质量的突破。随着智能化和个性化的增长,教育质量提高也离不开学校领导者水平的提高以及教育管理的创新,因为它不仅带来方向的正确和效率的提高,也能促成教育质量所需要的各项标准规范。但是,课程与教学的改进、学校领导者水平的提高和管理创新,并不能自动带来教育质量提高对人们教育需求的满足,只有当这些资源配置真正能促进学生发展,并且能够促进学生及其家长满意度提高的时候,才能支撑教育质量的提高。而这些资源配置与使用能否真正转化为需求满足,就取决于大数据的应用。
事关教育质量提高的要素涉及多方主体,包括学生及其家长、教师、学校、主管部门和社区。
大数据的出现,让各方通过互联网能够更加准确地掌握学校教育质量状态,特别是了解教育质量评价信息,从而极大地减少因为信息误导而导致的质量损失。同时,我们还不得不说,作为教育质量的供给方,学校或其主管部门对教育质量的控制与监测,实际上是教育服务生产者在主观上的自我评价。只有将学校教育服务转化为受教育者及其家长真实的选择,才是在客观上对教育质量的真实评价。因而,教育质量提高关注的焦点,就是受教育者及其家长是否产生了教育选择行为。特别重要的是,教育质量提高不仅关注受教育者通过教育选择行为而表现出来的质量评价,而且更为关注的是受教育者在之后的满意度评价。因此,在制度性地限制人们教育选择行为时,依托大数据技术,尽可能地实现学校教育质量信息共享与公开,并保证数据准确及时,才能够支撑教育质量提高的可持续性。
认识到大数据技术对教育质量提高的重要性,认识到质量大数据是实现教育质量提高的重要资源,应该说还只是第一步。数据采集、数据共享、数据挖掘、数据利用、数据安全等问题,有些已经在我们教育质量提高行动中取得了成就,有些还有待加强与完善,有些可能还刚刚起步。在数据采集方面,我们面临教育质量数据资源积累不足与大数据碎片化、割据化共存现象,这需要鼓励各学校、主管部门和社会第三方对质量数据资源的广泛采集和处理整合,明确不同种类数据的收集对象、收集方法等。在数据共享方面,应制定教育质量大数据的技术、产权、使用等标准和规范,最大程度地开放各类不同机构所拥有的教育质量数据,共同构建基于信用、安全为基础的“教育质量大数据”,突破“信息孤岛”藩篱。在数据挖掘使用方面,学校通过教育质量大数据识别受教育者多样化的教育需求,受教育者及其家长利用学校教育质量大数据识别学校真实质量状况,政府利用教育质量大数据实施更有效的教育质量政策。在数据安全方面,由于教育质量大数据包含有大量的个人隐私,甚至涉及国家安全的信息,因此需要厘清隐私数据和开放数据的界限,用法规制度的形式对教育质量大数据进行规范管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10