京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python多进程multiprocessing用法实例分析
本文实例讲述了Python多进程multiprocessing用法。分享给大家供大家参考,具体如下:
mutilprocess简介
像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。
简单的创建进程:
import multiprocessing
def worker(num):
"""thread worker function"""
print 'Worker:', num
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()
确定当前的进程,即是给进程命名,方便标识区分,跟踪
import multiprocessing
import time
def worker():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(2)
print name, 'Exiting'
def my_service():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(3)
print name, 'Exiting'
if __name__ == '__main__':
service = multiprocessing.Process(name='my_service',
target=my_service)
worker_1 = multiprocessing.Process(name='worker 1',
target=worker)
worker_2 = multiprocessing.Process(target=worker) # default name
worker_1.start()
worker_2.start()
service.start()
守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)就这句等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了
守护进程:
import multiprocessing
import time
import sys
def daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
time.sleep(2)
print 'Exiting :', name
def non_daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
print 'Exiting :', name
if __name__ == '__main__':
d = multiprocessing.Process(name='daemon',
target=daemon)
d.daemon = True
n = multiprocessing.Process(name='non-daemon',
target=non_daemon)
n.daemon = False
d.start()
n.start()
d.join(1)
print 'd.is_alive()', d.is_alive()
n.join()
最好使用 poison pill,强制的使用terminate()注意 terminate之后要join,使其可以更新状态
终止进程:
import multiprocessing
import time
def slow_worker():
print 'Starting worker'
time.sleep(0.1)
print 'Finished worker'
if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print 'BEFORE:', p, p.is_alive()
p.start()
print 'DURING:', p, p.is_alive()
p.terminate()
print 'TERMINATED:', p, p.is_alive()
p.join()
print 'JOINED:', p, p.is_alive()
①. == 0 未生成任何错误
②. 0 进程有一个错误,并以该错误码退出
③. < 0 进程由一个-1 * exitcode信号结束
进程的退出状态:
import multiprocessing
import sys
import time
def exit_error():
sys.exit(1)
def exit_ok():
return
def return_value():
return 1
def raises():
raise RuntimeError('There was an error!')
def terminated():
time.sleep(3)
if __name__ == '__main__':
jobs = []
for f in [exit_error, exit_ok, return_value, raises, terminated]:
print 'Starting process for', f.func_name
j = multiprocessing.Process(target=f, name=f.func_name)
jobs.append(j)
j.start()
jobs[-1].terminate()
for j in jobs:
j.join()
print '%15s.exitcode = %s' % (j.name, j.exitcode)
方便的调试,可以用logging
日志:
import multiprocessing
import logging
import sys
def worker():
print 'Doing some work'
sys.stdout.flush()
if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()
利用class来创建进程,定制子类
派生进程:
import multiprocessing
class Worker(multiprocessing.Process):
def run(self):
print 'In %s' % self.name
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()
python进程间传递消息:
import multiprocessing
class MyFancyClass(object):
def __init__(self, name):
self.name = name
def do_something(self):
proc_name = multiprocessing.current_process().name
print 'Doing something fancy in %s for %s!' % \
(proc_name, self.name)
def worker(q):
obj = q.get()
obj.do_something()
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
queue.put(MyFancyClass('Fancy Dan'))
# Wait for the worker to finish
queue.close()
queue.join_thread()
p.join()
import multiprocessing
import time
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print '%s: Exiting' % proc_name
self.task_queue.task_done()
break
print '%s: %s' % (proc_name, next_task)
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
return
class Task(object):
def __init__(self, a, b):
self.a = a
self.b = b
def __call__(self):
time.sleep(0.1) # pretend to take some time to do the work
return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
def __str__(self):
return '%s * %s' % (self.a, self.b)
if __name__ == '__main__':
# Establish communication queues
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
# Start consumers
num_consumers = multiprocessing.cpu_count() * 2
print 'Creating %d consumers' % num_consumers
consumers = [ Consumer(tasks, results)
for i in xrange(num_consumers) ]
for w in consumers:
w.start()
# Enqueue jobs
num_jobs = 10
for i in xrange(num_jobs):
tasks.put(Task(i, i))
# Add a poison pill for each consumer
for i in xrange(num_consumers):
tasks.put(None)
# Wait for all of the tasks to finish
tasks.join()
# Start printing results
while num_jobs:
result = results.get()
print 'Result:', result
num_jobs -= 1
Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。
进程间信号传递:
import multiprocessing
import time
def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
print 'wait_for_event: starting'
e.wait()
print 'wait_for_event: e.is_set()->', e.is_set()
def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
print 'wait_for_event_timeout: starting'
e.wait(t)
print 'wait_for_event_timeout: e.is_set()->', e.is_set()
if __name__ == '__main__':
e = multiprocessing.Event()
w1 = multiprocessing.Process(name='block',
target=wait_for_event,
args=(e,))
w1.start()
w2 = multiprocessing.Process(name='nonblock',
target=wait_for_event_timeout,
args=(e, 2))
w2.start()
print 'main: waiting before calling Event.set()'
time.sleep(3)
e.set()
print 'main: event is set'
Python多进程,一般的情况是Queue来传递。
Queue:
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])
if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()
多线程优先队列Queue:
import Queue
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name
def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1
# Create new threads
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1
# Fill the queue
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release()
# Wait for queue to empty
while not workQueue.empty():
pass
# Notify threads it's time to exit
exitFlag = 1
# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"
多进程使用Queue通信的例子
import time
from multiprocessing import Process,Queue
MSG_QUEUE = Queue(5)
def startA(msgQueue):
while True:
if msgQueue.empty() > 0:
print ('queue is empty %d' % (msgQueue.qsize()))
else:
msg = msgQueue.get()
print( 'get msg %s' % (msg,))
time.sleep(1)
def startB(msgQueue):
while True:
msgQueue.put('hello world')
print( 'put hello world queue size is %d' % (msgQueue.qsize(),))
time.sleep(3)
if __name__ == '__main__':
processA = Process(target=startA,args=(MSG_QUEUE,))
processB = Process(target=startB,args=(MSG_QUEUE,))
processA.start()
print( 'processA start..')
主进程定义了一个Queue类型的变量,并作为Process的args参数传给子进程processA和processB,两个进程一个向队列中写数据,一个读数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27