
环保大数据互联时代将到来
近年来,互联网为解决环境问题创造了前提条件。通过互联网的应用,可以实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。公众舆论借助互联网将对企业排污形成巨大压力,督促其有效治污,也将推动环境改善因素由单一政府向全社会延伸。
预计在互联网的影响下,环保领域将迎来一个大数据互联时代。
线上线下有效互动
环保物联网覆盖范围将扩大,人人参与的大环境形成
目前,我国已经基本建立起了污染排放监控体系,特别是对于国控、省控、市控重点污染企业。然而,这些数据的真实性、有效性、公开性却一直受到不同程度的质疑。
随着信息技术日益完善普及,特别是新《环保法》的实施将为有力打击环境违法行为提供重要法律支撑,使“线上数据+线下执法”的模式配合大有可为。在推动环境改善驱动因素由单一政府向全社会延伸过程中,环境相关信息及数据的价值将得到显现。
一方面,预计未来除现有重点污染企业之外,大量“漏网之鱼”将逐步纳入监测体系并进行全面监控,环保物联网覆盖范围有望显着扩大。而来自民间的环境信息也将通过移动互联 网等渠道大量涌现,使环境大数据具备坚实基础。与此同时,实施数据打假及信息公开并为后续执法提供更强支撑。
另一方面,预计未来建设环境监察移动执法系统的机构以及执法人员比例都将大幅增加,从而实现公众、企业、执法单位从线上到线下的有效互动,形成人人参与的环保大环境。
环境质量得到更多关注
多渠道信息检验治污效果,排污企业将改变 “验收导向”方式
今年以来,无论政府层面还是公众方面,在总量减排的基础上,更多提出环境质量的改善。相关指标有望逐步取代单一的污染物减排数字,成为“十三五”以及未来中长期环境规划的重要导向。
因此,从多渠道获得的环境质量数据,有望成为检验治污工程是否真实有效的关键考量。排污企业也将改变传统“验收导向”思维方式,更加倾向于选择具备技术和资金优势、能够真正解决问题的环境服务商。
大数据来源有哪些?
环境质量、污染源排放和个人活动信息将通过互联网互通共享
环境领域将迎来一个大数据互联时代。若要全面呈现环境问题,尤其需要通过互联网实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。具体来看,目前主要存在以下3种与环境相关的数据来源:
第一,环境质量。这是指外部自然环境质量表征,典型数据信息包括大气、地表水、水资源、土壤、辐射、声、气象等环境质量,通常由政府及有关部门(如环境保护部)公开其制作或获取的环境信息。
基于已经建立起来的以国控、省控、市控3级为主的环境质量监测网,形成信息公开机制,初步勾勒出了我国整体环境质量状况。比如,全国城市空气质量日报/时报(367个城市)、全国主要流域重点断面水质自动监测周报(145个监测断面)、全国辐射环境自动监测站空气吸收剂量率(44个站点)等。
第二,污染源排放。这是造成环境污染的核心原因,具体体现为废水、废气、固废、放射源等形式,主要包括污染源基本情况、污染源监测、设施运行、总量控制、污染防治、排污费征收、监察执法、行政处罚、环境应急等环境监管信息。
《全国污染源普查公报》中的排污数据及信息,将是政府监管以及公众监督的重要前提与基础。目前,各地正逐步落实环境保护部出台的《关于加强污染源环境监管信息公开工作的通知》等文件。以北京市为例,虽然已按季度发布国控企业污染源监督性监测情况,而27家重点排污单位和上市企业仅于今年起初步实现自行监测信息对外发布,实时信息公开仍无法实现。
第三,个人活动产生的与环境相关的数据信息,如用水量、用电量、生活中产生的废弃物等。尽管这些数据拥有巨大的潜在价值,但其分布却呈现天然的分散状态,互联网特别是 移动互联 网的快速普及应用正在使上述信息的收集利用变得可行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10