
详解Python 模拟实现生产者消费者模式的实例
散仙使用python3.4模拟实现的一个生产者与消费者的例子,用到的知识有线程,队列,循环等,源码如下:
Python代码
import queue
import time
import threading
import random
q=queue.Queue(5)
#生产者
def pr():
name=threading.current_thread().getName()
print(name+"线程启动......")
for i in range(100):
t=random.randint(2,9)
print(name,"睡眠时间: ",t)
time.sleep(t);
d="A"+str(i)
print(name+"正在存第",i+1,"个数据: ",d)
#q.put("A"+str(i),False,2000)
q.put(d)
print("生产完毕!")
#消费者
def co():
name=threading.current_thread().getName()
time.sleep(1)
print(name+"线程启动......")
while True:
print(name+"检测到队列数量: ",q.qsize())
t=random.randint(2,9)
print(name,"睡眠时间: ",t)
data=q.get();
print(name+"消费一个数据: ",data)
p=threading.Thread(target=pr,name="生产者")
c=threading.Thread(target=co,name="消费者1")
c2=threading.Thread(target=co,name="消费者2")
p.start()
c.start()
c2.start()
在本例里面散仙启动了1个生产者线程,2个消费者线程,打印效果如下:
Python代码
生产者线程启动......
生产者 睡眠时间: 4
消费者1线程启动......
消费者1检测到队列数量: 0
消费者1 睡眠时间: 2
消费者2线程启动......
消费者2检测到队列数量: 0
消费者2 睡眠时间: 3
生产者正在存第 1 个数据: A0
生产者 睡眠时间: 9
消费者1消费一个数据: A0
消费者1检测到队列数量: 0
消费者1 睡眠时间: 8
生产者正在存第 2 个数据: A1
生产者 睡眠时间: 5
消费者2消费一个数据: A1
消费者2检测到队列数量: 0
消费者2 睡眠时间: 7
生产者正在存第 3 个数据: A2
生产者 睡眠时间: 8
消费者1消费一个数据: A2
消费者1检测到队列数量: 0
消费者1 睡眠时间: 2
生产者正在存第 4 个数据: A3
生产者 睡眠时间: 7
消费者2消费一个数据: A3
消费者2检测到队列数量: 0
消费者2 睡眠时间: 9
生产者正在存第 5 个数据: A4
生产者 睡眠时间: 2
消费者1消费一个数据: A4
消费者1检测到队列数量: 0
消费者1 睡眠时间: 5
生产者正在存第 6 个数据: A5
生产者 睡眠时间: 5
消费者2消费一个数据: A5
消费者2检测到队列数量: 0
消费者2 睡眠时间: 6
生产者正在存第 7 个数据: A6
生产者 睡眠时间: 7
消费者1消费一个数据: A6
消费者1检测到队列数量: 0
消费者1 睡眠时间: 7
生产者正在存第 8 个数据: A7
生产者 睡眠时间: 3
消费者2消费一个数据: A7
消费者2检测到队列数量: 0
消费者2 睡眠时间: 8
生产者正在存第 9 个数据: A8
生产者 睡眠时间: 2
消费者1消费一个数据: A8
消费者1检测到队列数量: 0
消费者1 睡眠时间: 4
生产者正在存第 10 个数据: A9
生产者 睡眠时间: 4
消费者2消费一个数据: A9
消费者2检测到队列数量: 0
消费者2 睡眠时间: 5
生产者正在存第 11 个数据: A10
生产者 睡眠时间: 2
消费者1消费一个数据: A10
消费者1检测到队列数量: 0
消费者1 睡眠时间: 3
生产者正在存第 12 个数据: A11
生产者 睡眠时间: 3
消费者2消费一个数据: A11
消费者2检测到队列数量: 0
消费者2 睡眠时间: 3
生产者正在存第 13 个数据: A12
生产者 睡眠时间: 3
消费者1消费一个数据: A12
消费者1检测到队列数量: 0
消费者1 睡眠时间: 3
生产者正在存第 14 个数据: A13
生产者 睡眠时间: 8
消费者2消费一个数据: A13
消费者2检测到队列数量: 0
消费者2 睡眠时间: 7
生产者正在存第 15 个数据: A14
生产者 睡眠时间: 3
消费者1消费一个数据: A14
消费者1检测到队列数量: 0
消费者1 睡眠时间: 7
生产者正在存第 16 个数据: A15
生产者 睡眠时间: 2
消费者2消费一个数据: A15
消费者2检测到队列数量: 0
消费者2 睡眠时间: 9
从这个例子中,我们发现利用队列,来做同步时非常简单方便的,除此之外队列,还有如下几个方便的方法:
介绍一下此包中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]])获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
以上就是详解Python 模拟实现生产者消费者模式的实例
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02