
大数据时代人口学如何积极作为
在探索实践过程中,人口学如何展现学科优势呢?笔者认为,核心是围绕大数据的开发使用积极创造条件。一是尝试提供共识性的基础数据用于大数据校准;二是将成熟的人口学理论和方法介绍到新数据的开发使用中。通过利用现有基础数据,生产一些共识性的基础数据和汇总指标,帮助校准大数据统计结果,促进新数据的使用和开发。百度慧眼就利用基础户籍数据或登记数据对基于地图定位请求数据估计的宁波和杭州湾地区小范围人口规模进行了校准,从而综合判断新数据的代表性和精确度,为新数据的开发使用提供了依据。
在理论和技术方面,人口学多年发展积累了很多非常成熟的方法和技术,例如队列分析技术、标准化技术、生命表技术、间接估计方法、随机人口模型、事件史技术、人口预测技术等等。这些模型和技术有着深厚的学科积累,懂计算机技术的人不一定都搞得懂。研究中该如何选择测量或汇总指标、确定模型、设定参数等,可能都需要一定的人口学基础作为指导。人口学者应该积极将既有理论工具和方法应用于指导新数据的开发,让其他人特别是数据掌控者知道人口学专业的价值,并在数据分析实践中逐渐提高学科的相关技能。
最后,人口学者在积极接触和探索大数据时,应该有创新思维。尽管目前能够获得的大数据、新数据在代表性、微观准确性上有所不足,但通常具有很好的时效性和较大的样本基数,在区域或人群汇总指标上具有较好的效度和信度。我们应该充分利用这些汇总信息,善于利用相对指标分析总体的结构特征及其变迁。例如,在传统人口数据中,空间数据较难得,了解人口的空间分布很难。现在,手机和智能设备可提供非常准确的人口位置信息,帮助我们更好地估计部分人口的空间分布、变动,特定空间内的人口构成等。但并非所有人都使用手机和智能设备,它提供的信息可能存在结构性偏差(如对老年人、小孩的情况反映不足),但仍是重要的参考。通过一定校准,准确度可进一步提高。这就需要人口学者掌握相关的分析和校准技术。以往人口学倾向于在个人层面上进行分析(生育、死亡、迁移),因为只有个人才有年龄、性别等人口学特征,但目前在个体层面进行数据的匹配、串并还很难。人口学者可能需要更多地探索在相对中观或宏观的研究单位上,人群统计特征与其他汇总属性之间的关系。例如,社区人口规模、人口密度、人口结构与社区社会经济形态以及人口过程如死亡水平、出生水平、迁移状态之间的关系,因为这些新型大数据往往更容易在较高层次的研究单位上实现指标汇总、匹配和信息串并。这种情况下,如何进行因果推论,如何避免层次谬误之类的方法论问题也需要研究和回答。
总之,人口学要想在大数据时代有所作为,需直面挑战,积极创造条件。其他学科也应该加强和人口学者的合作。因为如果主要关注基本人口社会变量的人口学者都难以有所作为,其他学科利用大数据做出来的研究,其坚实性和深入性也就值得怀疑。我们要一起推动公共部门和数据企业加强大数据的开放、串并和合理合法使用,创新数据的开发使用方式甚至提问题方式。这还有很长的路要走,可先从局部地区、具体项目做起来,并在学科内外加强共享、交流、学习,不断积累,共同进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10